

Contents Grade 7 Book 1

	No.	Title		Pg .
,	RI	Represent nine-digit numbers	I	ii
\square	R2	Compare and order whole numbers	3	iv
\square	R3	Prime numbers	5	
	R4	Rounding off to the nearest 5, 10,100 and 1000	7	\times
	R5	Calculating whole numbers	9	xii
	R6	Factors and multiples	12	xvi
\square	R7	Fractions	14	xviii
	R8	Decimals	16	xxii
	Rq	Patterns	18	xxvi
	RIO	2-D shapes and 3-D objects	20	xxx
	RII	Transformations	23	xxxiv
	RI2	Area, perimeter and volume	26	xxxviii
-	RI3	Time	29	x
	R14	Temperature, length, mass and capacity	30	xlii
	RI5	Probability	32	xlvi
	RI6	Data	34	xlviii
	I	Commutative property of addition and multiplication	36	2
	2	Associative property of addition and multiplication	38	4
	3	Distributive property of multiplication over addition	40	6
	4	Zero as the identity of addition, one as the identity of multiplication, and other properties of numbers	42	8
	5	Multiples	44	10
	6	Divisibility and factors	46	12
	7	Ratio	48	14
	8	Rate	50	16
	9	Money in South Africa	52	18
	10	Finances - Profit, loss and dis	54	20

II	Finances - Budget	57	22
12	Finances - Loans and Interest	59	24
13	Finances	61	26
14	Square and cube numbers	63	28
15	Square and cube roots	66	32
16	Exponential notation	69	36
17	Estimate and calculate exponents	71	38
18	Estimate and calculate more exponents	73	40
19	Numbers in exponential form	75	42
20	Construction of geometric figures	77	44
21	Angles and sides	79	46
22	Size of angles	81	50
23	Using a protractor	83	54
24	Parallel and perpendicular lines	85	56
25	Construct angles and a triangle	87	58
26	Circles	89	62
27	Triangles	91	64
28	Polygons	94	6
29	Congruent and similar shapes	96	72
30	Fractions	98	74
31	Equivalent fractions	100	76
32	Simplest form	102	78
33	Add common fractions with the same and different denominators	104	80
34	Multiply unit fractions by unit fractions	106	82
35	Multiply common fractions by common fractions with the same and different denominators	108	84
36	Multiply whole numbers by common fractions	110	86

Contents Grade 7 Book 2

No.	Title		Pg.	92	Enlargement and reduction	221	62	119	More input and output values	276	122
65	Numeric patterns: constant difference	167	2	93	More enlargement and reduction	223	64	120	Algebraic expressions	278	124
66	Numeric patterns: constant ratio	169	4	94	Enlargements and reductions	225	66	121	The rule as an expression	280	126
67	Numeric patterns: neither a constant difference nor a	171	6	95	Prisms and pyramids	227	68	122	Sequences and algebraic expressions	282	128
				96	3-D objects	229	70	123	The algebraic equation	284	130
68	Numeric patterns: tables	173	8	97	Building 3-D models	231	72	124	More on the algebraic equation	286	132
69	Number sequences and words	175 177	10	98	Visualising 3-D objects/playing a game	233	74	125	More algebraic equations	288	134
	Geometric number patterns			99	Faces, vertices and edges	235	76	126	Data collection	291	136
72	Numeric patterns: describe a pattern	179 181	14	100	More faces, vertices and edges	237	78	127	Organise data	293	140
73	Input and output values	183	20	101	Even more faces, vertices and edges	239	80	128	Summarise data	295	144
74	Algebraic expressions and equations	185	22	102	Views	241	82	129	Bar graphs	297	148
75	Algebraic expressions	187	24	103	Constructing a pyramid net	243	86	130	Double bar graphs	299	152
76	More algebraic expressions	189	26	104	Construct a net of a prism	245	88	131	Histograms	301	156
77	Algebraic equations	191	28	105	Integers	247	92	132	More about histograms	303	160
78	More algebraic equations	193	30	106	More integers	249	92	133	Pie charts	305	164
79	Algebraic equations in context	195	32	108	Integer operations	253	94 96	134	Report data	307	166
80	Interpreting graphs: temperature and time graphs	197	34	109	Integer operations	255	98	135	Data handling cycle	309	170
81	Interpreting graphs: rainfall and time graphs	199	38	109	Adding and subtracting integers	257	100	136	Data handling cycle (continued)	311	172
82	Interpreting graphs: time and distance	201	40	III	Commutative property and integers	259	102	137	Possible outcomes	313	174
83	Drawing more graphs	203	42	II2	Associative property and integers	261	104	138	Definition of probability	315	176
84	Drawing graphs again	205	46	113	Integers: distributive property and integers	263	106	139	Relative frequency	317	178
85	Drawing even more graphs	207	48	114	Number patterns: constant difference and ratio	265	108	140	Probability and relative frequency	319	180
86	Transformations	209	50	115		267	110	1419	Revision: number, operations and relationships	321	182
87	Rotation	211	52		constant ratio			1416	Revision: patterns, functions and algebra	322	184
88	Translation	213	54	116	Number sequences and words	269	112	142	Revision: shape and space (geometry)	323	186
89	Reflection and reflective symmetry	215	56	117	Number sequences: describe a pattern	271	114	143	Revision: measurement	324	188
90	Transformations again	217	58	118a	Input and output values	273	118	144	Revision: data handling	325	190
91	Investigation	219	60								

Introduction to the workbooks

What are the workbooks?

The national Department of Basic Education is providing workbooks to every child in a public school in a number of subjects including mathematics. These workbooks are to be provided free of charge to every child.

Each and every child should have their own workbook. They should be allowed to take them home and they can (and indeed must) write in them.

These workbooks will help teachers to manage their teaching time and monitor the progress and performance of their learners.

The two books for Mathematics Grade 7 are available in English and Afrikaans.

The workbooks have been designed to be fully compliant with the National Curriculum Statement (NCS) and the Curriculum and Assessment Policy Statements (CAPS).

What is the place of these worksheets in teaching?

It is important to see what place the worksheets can play in your teaching of Grade 7 mathematics. They are not a substitute for your teaching the concepts and procedures of mathematics. What the worksheets are for is as a help in the practical work you give the learners to do. There are three very important components in every teaching interaction:

Firstly, it is important to have a knowledgeable teacher who is familiar with the content knowledge being taught.

Secondly, it is necessary for the knowledgeable teacher to communicate this knowledge so that the learners do not just memorise facts or formulae. Provide concrete (hands on) activities and semi-abstract activities such as making drawings. Good teaching requires an understanding of what the learners already know, building on it, and the skill to communicate in a way that the learners can understand easily, but still be kept interested and challenged.

Thirdly, for learning to be retained, learners must make it their own, and this requires immediate practice. It is this component the worksheets are designed for - to help the learners make the new knowledge and skills their own. The worksheets provide a well designed and sequenced set of practical exercises for the learners to use under your guidance. They will save you a lot of time(and money) having to write exercises on the board or photocopying your own worksheets.

The structure of the worksheets

The structure of the Teacher Guide

More notes on the structure of the Teacher Guide pages

Content link

The content link refers to the main concepts that we are dealing with in the Foundation Phase. For example, if we are describing how to measure a flat surface, the content link will be other worksheets dealing with measurement of area and volume of shapes and objects.

Resources

Note that sometimes you need additional resources and this needs careful preparation. E.g. if you need to use Cut-outs or any other resources, you have to ask yourself: "Do I have the resources in my class? Can I make it from recyclables? Can I ask the children to bring things from home?" Making sure you have the resources ready is in addition to the normal preparation that you need to make before any lesson. You should always have read the worksheet and worked through it yourself before using it.

Introduction

The introduction links to the Introduction in the worksheet in the learner's book. This could be:

- A fun activity to get the learner's attention
- A problem activity to get the learner involved and thinking
- A revision activity to revise some important concepts needed to further develop the concept in this lesson further

Oral questions

These are questions you can pose for learners after they have been doing a question or two in their workbooks to check their understanding.

Problem solving

This is an activity that can be done by those who have finished the worksheet before the others or it can be used as a homework activity. It is meant to be challenging and/or fun.

Reflection

These are the questions that you need to ask yourself after the lesson. If you cannot answer "Yes" to all the questions you pose to yourself about whether the learners have reached the objectives of the worksheet, you should plan to revise or cover those concepts again in the next lesson.

Common Errors

We can improve our teaching and learners' learning if we know what kind of mistakes are being made. You should keep a journal of common errors and how you can correct them. Only through identifying the cause of the problem can you correct it.

The concrete-to-representational-to-abstract sequence

What is the purpose of the "Concrete-to-representational-toabstract" (CRA) sequence?

The purpose of teaching through a concrete-to-representational-toabstract sequence of instruction is to ensure learners have a thorough understanding of the mathematical concepts and skills while they are learning.

What is this sequence?

Concrete level

The concrete level of understanding is the most basic level of mathematical understanding. This level is the crucial beginning for the development of conceptual understanding of mathematics.

Each mathematical skill and knowledge is first modelled with concrete materials. Children should be provided with many opportunities to practice and master mathematical skills and knowledge using concrete materials.

Concrete level learning occurs when children have opportunities to manipulate concrete objects to solve problems.

The concrete objects you use in a classroom lesson can include everyday objects (beans, sticks, matches, popsicle sticks or stones) or specially made objects (sometimes called manipulatives) designed so that a
child can learn some mathematical concepts by actually handling it. The experience of using these concrete objects provides a way for children to learn concepts such as addition, subtraction, multiplication and division in a developmentally appropriate, hands-on way. Examples of specially made manipulatives are: counters, interlocking cubes, Cuisenaire rods, colour tiles, pattern blocks, base-ten blocks and rods, fraction strips, tangrams and geoboards.

There are two types of concrete objects we can use:

- Discrete concrete materials are those that are individual, distinct objects that can be counted.
- Continuous concrete materials are used in measurement, e.g. scales, rulers, measuring cups, trundle wheels.

In practice concrete objects are used most in the earlier grades, but in Grade 7 you will find that there are times when you need to use them too.

Discrete materials

Discrete materials can be easily manipulated through sight and touch. Children first need a lot of experience in the early grades with discrete materials before they will benefit from using continuous materials.

Continuous materials

There are concrete objects that can be used to do continuous measurements of other objects, such as scales, rulers and measuring cups, and clocks.

Digital bathroom scale	Analogue bathroom scale	Digital kitchen scale	Ruler	Measuring cups	Trundle wheel

The workbooks provide learners with opportunities to practice and demonstrate mastery using some concrete materials. Your task as a teacher is to make sure they have these items. Some of the Workbook Cut-outs provide such items.

Representational level

At the representational level of understanding children use or draw pictures of concrete objects when solving problems. As soon as children have mastered a particular mathematical concept or skill at the concrete level they should move to the representational level. When children draw solutions, children are crossing an intermediate step where they begin to transfer their concrete understanding toward an abstract level of understanding.

The representational level includes the semi-concrete and semiabstract levels. The semi-concrete involves the representation of actual numbers with things such as dominoes, pictures on cards, dice, etc. and the semi-abstract involve drawing pictures that represent the concrete objects previously used. This includes the semi-concrete and semi-abstract levels.

The semi-concrete involves the representation of actual numbers with things such as dominoes, pictures on cards, dice, etc. Some cut-outs enable objects such as dice to be made.

The semi-abstract involves drawing pictures that represent the concrete objects previously used.

The semi-abstract involves drawing pictures that represent the concrete objects previously used.

The workbooks have a large number of pictures that the learners can use to solve problems.

Abstract level

After the learners have mastered the two previous levels they can move to the abstract level, using only numbers and mathematical symbols.

The child no longer uses concrete objects or drawings to solve problems. This is particularly so in the Senior Level.

When children solve problems using paper and pencil only, it is a common example of abstract level problem solving. Abstract understanding also enables us to do mental mathematics - 'doing maths in your head'.

Many opportunities in the workbooks are given on the abstract level to demonstrate and practice the concept before moving on to the next concept.

What if a child cannot solve problems at an abstract level?

We have these suggestions for you if a child is not successful at solving problems at an abstract level. Provide remedial instruction on the concept or skill at the:

- concrete level using appropriate concrete objects.
- representational level and provide opportunities for the child to practice by drawing solutions.
- abstract level giving the children the opportunity to explain their solutions and how they got them.

Mental mathematics

Mental mathematics is using knowledge of the basic mathematical facts to perform mental, as opposed to pen and paper, calculations. Mental maths calculations are done in one's head instead of using pencil and paper, calculators or other aids.

Do the workbooks have mental maths exercises?

No. The worksheets do not include mental maths exercises.

Why is this?

The reason is simple. The worksheets are pencil and paper exercises. They are often more complicated than mental maths exercises (and it would take a teacher a lot of time to design such exercises). By comparison mental

7×5 $=$?

 bonds, knowledge of multiplication tables, and basic maths facts.

This is not to say that the lesson the teacher plans which includes the use of a worksheet should not include mental maths exercises (often at the beginning of a lesson as a way of 'warming up').

Also, mental maths skills will aid the learners as they do the worksheet.

What is mental mathematics?

Mental mathematics is using knowledge of the basic mathematics facts to perform mental calculations rather than using pen and paper or aids such as calculators or computers.

We use mental maths as a way to calculate (give exact answers) and estimate (give approximate answers) quickly, using the maths facts that we have committed to memory. These maths facts include such things as the rules of multiplication, division, etc. and bonds and times tables.

To use mental maths means being able to give an answer to a maths question after only thinking about it, rather than doing calculations on paper. Even if the calculation is such that one does need to use pen and paper (or a calculator), mental maths enables one to quickly judge the reasonableness of the answer so obtained.

For success in mental maths a learner needs a good number sense as he or she has to make sense of number combinations while going through the process of learning the basic mathematical facts. A mental mathematical calculation requires the learner to use a combination of maths factual knowledge and number sense.

An expanded conception of mental maths skills includes being able to truly understand maths concepts and solve problems in a logical, methodical way.

How does one learn to do mental maths?

Traditionally, training in doing mental calculations relied very heavily on 'learning by heart' such things as bonds and times tables, though this has limitations in developing true number sense. People can memorise things they do not understand. However, it is still important that learners do know their bonds and times tables.

A number of well known mathematics programmes have their own special mental mathematics teaching methods.

To become competent in mental maths one first has to learn the 100 or so number facts relating to the single digits 0 to 9 for each of the four operations.

When the learners have memorised and know these facts, they can quickly retrieve them from memory, they have instant recall. Through practice over time the learner will achieve automaticity. He or she will no longer have to work out a strategy in their head on how to answer the problem.

So good teachers should be developing the "mental maths" skills wherever and whenever appropriate. Mental mathematics is a necessary part of what a knowledgeable maths learner does. Fluency in the 'language' of numbers and the use of that 'language' does require some degree of automacity (which would obviously include thorough memorisation of bonds and multiplication tables as well as a basic conceptual understanding of the four operations.)
[Becoming a good reader requires a similar development of automacity the beginning reader moves from sounding out words to reading instantly.]

What are the basic mathematical facts?

Number work	Comparing and ordering numbers
	Counting on
	Counting back
Addition	Number bonds
	Counting on
	Adding zero
	Number families
	Building up and breaking down numbers
	Doubling in addition
	Near doubles
	Filling up the tens
	Compensation
	Commutative property of addition
Subtraction	Taking away
	Halving in subtraction
	Doubling in subtraction
	Subtraction as the inverse operation of addition.

Multiplication	Skip counting (multiples)
	Multiplication by zero
	Multiplication tables
	Equal groups
	Repeated addition
	Commutative property of multiplication
	Place-value-change strategy for multiplying by 10, 100, 1000
Division	Sharing leading to division
	Grouping leading to division
	Halving in division

Teaching mental maths

A maths teacher needs to incorporate some aspect of mental maths in nearly every lesson. The actual time spent may often be very short - five minutes a day - though some lessons may focus more directly on mental maths.

To do mental maths learners need to know the number facts relating to the digits 0 to 9. Initially this involves learning and practice. With time the learner will be able to recall and use these facts automatically.

In the early years of mental maths development it is important to give the children short tests, mark them, and give the children feedback.

Mental maths tests can be oral or pencil and paper or you can have a combination of written and oral answers. Oral answers and explaining how they got the answer will be more valuable to you as teacher and the learners because they will hear and share different strategies.

When you for example ask "What is 7 times 5 ? " also ask what " 7 times 5 " means. They might answer " 7 groups of 5 ". Then continue: "If 7 groups of 5 equals 35 , how much will 8 groups of 5 be?" " 6 groups of 5 ?", etc. Ask the children that gave the correct answer: "How did you get the answer?" and then ask the learners that got it incorrect: "How did you get the answer?"

Through their explanation not only can you assess them but the rest of the class also learn from them. You will notice that children will use a variety of strategies to calculate. The child that answered it incorrectly might correct him or herself when explaining how she or he got the answer or you as teacher can guide the child while giving feedback to the correct answer.

Help your learner to think mathematically using the workbooks

There are three kinds of knowledge: physical, social and conceptual knowledge.

Physical knowledge

Learners gain physical knowledge through touching, using, playing with, and acting on concrete/physical material. Learners need a lot of concrete experiences in the mathematics classroom to develop their physical knowledge of numbers and number patterns.

The workbooks provide a variety of ideas and pictures on how to use concrete resources. At the back of each workbook we include cut-outs that encourage the use of resources.

Teachers need to consider which concrete resources should go with each worksheet. The Resources block gives some suggestions. Find out if your school has these resources or whether you can make them yourself.

Social knowledge

Social knowledge is the words and conventions we need to know and remember if we are to be able to communicate with and interact with other people. For example, we need to be on time at school. It is a convention, it is a decision we have taken and all agree to. Below are example of some mathematics conventions that we will find throughout the workbooks:

- The way in which we write a number sentence.
- The way in which we write a number symbol.
- The way in which we use the equal sign to show equivalence.

We have agreed to use these conventions so that we can communicate mathematically with others. The teacher must help learners to put what they have learned in words or writing to explain it to the others.

Conceptual knowledge

When learners see relationships, patterns, regularities and irregularities when doing activities, they are constructing conceptual knowledge. A concept is a general idea we hold in our minds that helps us to understand real individual things in the world. We build up conceptual knowledge based on our experience.

What is your role as a teacher in developing conceptual knowledge when using the workbooks?
You should use the worksheets to assist the learners to build up their understanding of mathematics and to see the patterns in numbers. Encourage your learners to reflect on what they are doing and thinking when completing a worksheet.

You can ask them questions like:

- How did you get this answer?
- What did you do to complete this task?
- What is another way to solve this problem?
- Can you compare your thinking or solutions with your partner's?
- How can you show your thinking using, drawings, concrete resources, numbers and words?

R1 Represent nine-digit numbers

Topic: Whole numbers Content links: R2-R5 Grade 8 links: R1, R4, 1 Grade 9 links: R1, R10, 76-80

Objectives

Revise the following done in Grade 6:

- Order, compare and represent numbers to at least 9-digit numbers

Dictionary

Place value: The value of a digit depending on its place in a number E.g. 389 123: the value of the 8 is 80000

Introduction

Ask the learners to go to their workbooks on page ii. Ask the
learners to type a nine-digit number into their calculators. Do not use zeros. Change the following to zero. Example: 364281193

- hundred thousands

364081193

- units 364081190
- millions 360081190
- ten thousands 360001190
- tens 360001100
- ten millions 300001100
- hundred 300001000
- thousands

300000000

Oral questions

Ask questions such as:

- How did you change a digit to zero? What happens to that place value?

What is the value of the underlined digit.

Example: $7 \underline{63} 104$
 60000

Answers:
$\begin{array}{ll}\text { a. } 80 & \text { b. } 3000\end{array}$
c. 10000
d. 70000000 e. 5 f. 90000

Write the following in expanded notation:

Example: 942576

$=900000+40000+2000+500+70+6$
Answers:
a. $100000000+50000000+4000000+700000+90000$ $+8000+100+5$
b. $500000+90000+2000+500+60+2$
c. $4000000+900000+70000+8000+800+70+9$
d. $70000+7000+600+60+6$
e. $500000+40000+9000+300+20+7$
f. $4000000+9$

What is the value of 5 in each of the following numbers?

Example: 532789

500000

Answers:
a. 50000
d. 50
b. 5000000
e. 500000
c. 5000 f. 5

R1 Represent nine-digit numbers cont...

Topic: Whole numbers Content links: R2-R5 Grade 8 links: R1, R4, 1 Grade 9 links: R1, R10, 76-80

Renlection questions
Did learners meet the objectives?

Common errors
Make notes of common errors made by the learners.

Objectives

Revise the following done in Grade 6:

- Order, compare and represent numbers to at least 9-digit numbers

Dictionary

Place value: Place value: The value of a digit depending on its place in a number. E.g. 389 123: the value of the 8 is 80000

Ascending order: Arranged from smallest to largest. Increasing.
Descending order: Arranged from largest to smallest. Decreasing.
Interval: A set of real numbers between two numbers either including those two numbers, or excluding them, or including only one of them. It is a range of numbers.

Introduction

iv
Ask the learners to go to their workbooks on page iv. Revise the following symbols with your learners: > Ask learners to give five examples using the symbols. E.g.

- $256<265$
- $265>256$
- $265=265$
- $65<265$
- $605>265$

R2 Compare and order whole numbers cont...

Answers:

a. 34284	b. 34289	c. $34289-34284=5$
d. E.g. 34280	e. E.g. 34290	f. $34286+34287=68573$

Fill in the missing numbers:

21000	22000	23000	24000	25000	26000	27000	28000	29000	30000
31000	32000	33000	34000	35000	36000	37000	38000	39000	40000
41000	42000	43000	44000	45000	46000	47000	48000	49000	50000
51000	52000	53000	54000	55000	56000	57000	58000	59000	60000
61000	62000	63000	64000	65000	66000	67000	68000	69000	70000

Which number is halfway?

Answers

Which number comes next? Answers:
a. 331349
b. 549323

Write in ascending order:
Answers:
a. 421 178; 421 179; 421 180; 421 181; 421 182; 421183
b. 543 687; 543 688, 543 689; 543 690; 543691
c. $903675 ; 903676 ; 903677 ; 903678 ; 903679$

Write in descending order:
Answers:
a. $564747 ; 564746 ; 564745 ; 564744 ; 564743$
b. $907570 ; 907569 ; 907568 ; 907567 ; 907566$
c. 352 703; 352 702; $352701 ; 352700 ; 352699$

Fill in >, < or =
Answers:

a. $<$	b. $<$	c. $<$	d. $>$	e. $>$	f. $>$

Fill in > < or $=$
Answers:
a. $<\quad$ b. $=$

f. $<$

Answer: 98765321 and 12356789

Objectives

Revise the following done in Grade 6:

- Recognise and represent prime numbers to at least 100

Dictionary

Prime number: A number that can be divided evenly only by 1 or itself. The number must be greater than 1. E.g.: 7 can be divided evenly only by 1 or 7 , so it is a prime number.

Composite number: If it is not a prime number it is called a composite number. E.g.: 6 can be divided evenly by $1,2,3$ and 6 so it is a composite.

Introduction

viif
Fun question: When you add two prime numbers will it give you a prime number?

Which numbers smaller than 100 can only be divided by one or by the number itself?

A prime number can be divided evenly only by 1 or
itself. It has two, and only two, factors -1 and itself. itself. It has two, and only two, factors - 1 and itself. A prime number must be greater than 1 .

Use a drawing to show that the following numbers are not prime numbers but composite numbers.

Example: 8 can be divided by $1,2,4$ and 8

 2×4 or 4×2

00	1×9 or 9×1
3×3	

9 is not a prime number. 9 can be divided by 1,3 , and 9
b. 18
 1×18 or 18×1
: $8: 8: 8: 8: 8:$ 2 $\times 9$ or 9×2 :8:8:8: 3×6 or 6×3

R4 Rounding off to the nearest $5,10,100$ and 1000

Objectives

Revise the following done in Grade 6:

- Rounding off numbers to the nearest $5,10,100$, or 1000

Dictionary

Rounding: Rounding means reducing or increasing the digits in a number while trying to keep its value similar. The result is less accurate, but easier to use. E.g.:

- 749 rounded off to the nearest 10 is 750
- 749 rounded off to the nearest 100 is 700
- 749 rounded off to the nearest 1000 is 1000
- 749 rounded off to the nearest 5 is 750

The symbol for rounding of is: \approx

What is the symbol for rounding off?
Answers:
a. \approx

Round off to the nearest 10 .
Example: 789 ~ 790
Answers:
a. 10
b. 0
c. 80
d. 60
e. 330
f. 450

Round off to the nearest 100.
Example: $789 \approx 800$

Answers:
a. 0
b. 100 \qquad d. 800
e. 900
f. 1800

Round off to the nearest 1000
Example: 789 ~ 1000

Answers:
a. 0
b. 0
c. 2000
d. 9000
e. 14000
f. 67000

R4

Rounding off to the nearest 5, 10, 100 and 1000 continued

	Complete the table:			
		Round off to the nearest 10	Round off to the nearest 100	Round off to the nearest 1000
	a. 7632	7630	7600	8000
	b. 8471	8470	8500	8000
	c. 9848	9850	9800	10000
	d. 5737	5740	5700	6000
	e. 9090	9090	9100	9000
	Round off to the nearest five. Example: $4 \approx 5$ Answers:			
	Complete the table:			
\square		Round off to the nearest 10	Round off to the nearest 100	Round off to the nearest 1000
	a. 2	0	0	0
	b. 7	10	0	0
	c. 48	50	100	0
	d. 781	780	800	1000
	e. 345	350	300	0
	f. 2897	2900	2900	2900

R5 Calculating whole numbers

Objectives

Revise the following done in Grade 6, without use of calculators:

R5 Calculating whole numbers continued

Answers

c.
178673
175568 +14
11
130
13000
11000
200000
$=324241$

Solve the subtraction sums. You can use a method of your choice

| C. | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 2 | 6 | 3 | 7 |
| -2 | 3 | 1 | 5 | 2 | 8 |
| | | | | 0 | 3 |
| | | | | 4 | 0 |
| | | 8 | 0 | 0 | |
| | 4 | 0 | 0 | 0 | |
| 9 | 0 | 0 | 0 | 0 | |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 9 | 4 | 8 | 4 | 3 |

| d. | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5 | 3 | 2 | 7 | 6 | 4 |
| -2 | 9 | 9 | 9 | 9 | 9 |
| | | | | 0 | 5 |
| | | | | 6 | 0 |
| | | 7 | 0 | 0 | |
| | 2 | 0 | 0 | 0 | |
| | 3 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 |
| 2 | 3 | 2 | 7 | 6 | 5 |

R5 Calculating whole numbers continued

Solve the multiplication sums. You can use the method of your choice.
Answers

Solve the division sums. You can use the method of your choice. Answers:
a.

a. | 1127 |
| ---: |
| $2 \longdiv { 2 2 5 4 }$ |
| -2000 |
| 254 |
| $-\quad 200$ |
| 54 |
| $-\quad 40$ |

b

b. | 117 rem 3 |
| ---: |
| $1 2 \longdiv { 1 4 0 7 }$ |
| $-\quad 1200$ |
| 207 |
| $-\quad 120$ |
| 87 |
| $-\quad 84$ |

C. 115 rem 15 $2 5 \longdiv { 2 8 9 0 }$
$\begin{array}{r}-2500 \\ \hline 390\end{array}$
-250
$\begin{array}{r}125 \\ -\quad 125 \\ \hline 1\end{array}$

1. We cycled 2455 m on the first day and 3650 m on the second day. How many kiometres did we

Answer: $455 \mathrm{~m}+3650 \mathrm{~m}=6105 \mathrm{~m}$
I jogged 1550 m and my fiend jogged 2275 m . How much further did my fiend jog than I did?
Answer: 2275 m-1550 m=725 m
The bakery bakes 2450 biscuits on one day. How many did they bake during March? Note that they
only bake six days of the week. only bake six days of the week.
Answer: $2450 \times 6 \times 4=58800$
My mother bought 3850 m of string. She has to divide it into 25 pieces. How long is each piece? Answer: $3850 \mathrm{~m} \div 25=154 \mathrm{~m}$

Objectives

HCF: Highest common factor. E.g. The highest common factor of 2,3 and 4 is 12 .

- Multiples of 2-digit whole numbers
- Factors of 2-digit whole numbers

Introduction

Ask the learners to open their workbooks on page xvi. Go through the definitions with your learners and ask them to give you examples. Practice with finding multiples and factors of whole numbers is especially important when learners do calculations with fractions. They use this knowledge to find the LCM when one denominator is a multiple of another, and also when they simplify fractions or have to find equivalent fractions.

Write down at least six multiples of the following numbers, and circle the common multiples shared by the two numbers. Answers:
a $2: 2,4(6) 8,10,12)$
6:(6.12) $18,24,36,42$
b. 3: 3, 6(9) 12, 15, 118
9:(9)(18), 27, 36, 45, 54
c. $4: 4,8,12,16,20,2428$
7: 7, 14, 21,28, 35, 42
d. $5: 5,10,15,20,25,30,35$, 40
8: $8,16,24,32,40,48$ composite. $1 \times 21=21,3 \times 7=21$. There are only 4 factors: $1,21,3$ and 7 . Lowest common multiple: E.g. the lowest common multiple of 3 and 5 is 15 , because 15 is a multiple of 3 and also a multiple of 5 . We use the abbreviation LCM for lowest common multiple.

Dictionary

Multiples: The products of natural numbers (1,2,3,4,5,...) are called the multiples of the number. Multiples are the results of multiplying by an integer, e.g. $3 \times 2=6$ so 6 is a multiple of 2 and 3 . The multiples of 6 are $6,12,18,24$.
Factors: Factors are the whole numbers you multiply together to get another whole number, in other words a whole number that divides exactly into another whole number is called a factor of that number, e.g. 3 and 4 are factors of 12 , because $3 \times 4=12$

Prime number: A prime number has only two different factors. The one factor is 1 and the other factor is the prime number itself.
Composite numbers have more than two different factors. E.g. 21 is

R6 \quad Factors and multiples continued

Write down the factors for the following, and circle the common factors for the two numbers. Answers:
a. 12:(1)(2)(3)(4)(6) (12) 24:(1)(2)(3)(4)(6) 8 , (12) 24
b. 28 : (1) $2,4,7$) 14,28 21:(1) $3,(7,21$
xvii
c. $15:$ (1)(3) 5,15 18: (1) $2,(3) 6,9,18$
d. 24 : (1,2, (3, 4, 6) $8,(12), 24$ 60: (1,2)(3,4) $5,(6) 10,12,15,20,30,60$
e. 18: (1) $2,(3) 6,(9) 18$ 81:(1)(3) 27,81

Look at the examples above. What is the highest common factor for each: Answers: a. 12; b. 7; c. 3; d. 12; e. 9

Complete the following:	Number	Factors	How many factors?	Prime or composite
	a. 12	$1,2,3,4,6,12$	6	Composite
	b. 41	1,41	2	Prime
	C. 63	$1,3,7,9,21,63$	6	Composite
d. 77	$1,7,11,77$	4	Composite	
e. 33	$1,3,11,33$	4	Composite	
	f. 121	$1,11,121$	3	Composite

Objectives

Revise the following done in grade 6:

- common fractions
- equivalent fractions with denominators that are multiples of each other.
- addition and subtraction of common fractions with the same and different denominators.
- addition and subtraction of mixed numbers.
- percentage of a whole.

Dictionary

The numerator is the top number in a fraction. Shows how many parts we have.

The denominator is the bottom number in a fraction. Shows how many equal parts the whole is divided into.

Equivalent fractions are fractions which have the same value, even though they may look different, e.g. $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}=\frac{5}{10}$

xviif

Introduction

Fractions are used everyday by people who don't even realise that they are using fractions. Name ten examples.
Ask the learners to read the definitions and give five examples of each. Ask the learners how are fractions, decimals and percentages linked. Give an example.

Complete the fractions to make them equal. Answers: Note that to do this you need to multiply (or divide) both the denominator and the nominator by the same number to get the equivalent fraction.
b. $\frac{3}{5} \times \frac{2}{2}=\frac{6}{10}$
c. $\quad \frac{2}{6} \times \frac{2}{2}=\frac{4}{12}$
d.
$\frac{6}{7} \times \frac{3}{3}=\frac{18}{21}$
e. $\frac{2}{4} \div \frac{2}{2}=\frac{1}{2}$
f. $\frac{9}{15} \div \frac{3}{3}=\frac{3}{5}$
g. $\quad \frac{5}{6} \times \frac{3}{3}=\frac{15}{18}$
h. $\frac{7}{9} \times \frac{2}{2}=\frac{14}{18}$
i. $\quad \frac{6}{22} \div \frac{2}{2}=\frac{3}{11} \quad j$.

$$
\frac{20}{25} \times \frac{4}{4}=\frac{80}{100}
$$

What happens to the numerator and denominator? Extend
the pattern by writing down three more equivalent fractions.
Answers:
a. $\frac{16}{48}=\frac{32}{96}=\frac{64}{192}$
b.

$$
\frac{81}{405}=\frac{243}{1215}=\frac{729}{3645}
$$

Complete the pattern. Answers:
a. $\frac{40}{48}=\frac{80}{96}=\frac{160}{192}$
c. $\quad \frac{72}{88}=\frac{144}{176}=\frac{288}{381}$
b. $\frac{81}{108}=\frac{243}{324}=\frac{729}{972}$
d. $\frac{125}{875}=\frac{625}{4375}=\frac{3125}{21875}$

Complete the fraction sums using the diagrams on the right. Answers:

Complete the sums: Answers:
a. $\frac{1}{2}=\frac{1}{8}+\frac{3}{8}=\frac{4}{8}$
b. $\frac{1}{2}=\frac{1}{14}+\frac{6}{14}=\frac{7}{14}$

Add and then subtract to test your answer. Answers:

$$
\begin{array}{rlrl}
\text { a. } \begin{aligned}
\frac{5}{7} \times 2 \\
\times 2
\end{aligned}+\frac{2}{14} \text { Test } \frac{12}{14}-\frac{2}{14} & \text { b. } \frac{7}{9} \times 3 \\
=\frac{10}{14}+\frac{2}{14} & =\frac{10}{14} \div 2 & =\frac{1}{27} \div 2 & \text { Test } \frac{22}{27}-\frac{1}{27} \\
=\frac{12}{14} & =\frac{5}{7} & =\frac{22}{27} & =\frac{21}{27} \div 3 \\
\div 3
\end{array}
$$

Calculate the following. Answers:
a. $3,6,9,12,15,18,21,24, \ldots$
$4,8,12.16,20,24,28, \ldots$
b. $5,10,15,20,25,30$..

$$
6,12,18,24,30,36, \ldots
$$ LCM: 12

$$
\text { LCM: } 30
$$

$$
\begin{aligned}
& \frac{1 \times 4}{3 \times 4}+\frac{3 \times 3}{4 \times 3}=\frac{4}{12}+\frac{9}{12}=\frac{13}{12} \\
& =1 \frac{1}{12}
\end{aligned}
$$

$$
\frac{4 \times 6}{5 \times 6}+\frac{1 \times 5}{6 \times 5}=\frac{24}{30}+\frac{5}{30}=\frac{29}{30}
$$

$$
=\frac{29}{30}
$$

xxi
$+$

$$
\begin{aligned}
& \text { Calculate the following: Answers: } \\
& \text { a. } 5 \frac{1}{3}+1 \frac{2}{4} \\
& =(5+1)+\left(\frac{1}{3}+\frac{2}{4}\right) \\
& =6+\frac{4}{12}+\frac{6}{12} \\
& =1+\frac{9}{24}-\frac{16}{24} \\
& =6+\frac{10}{12} \\
& =1 \frac{9}{24}-\frac{16}{24} \\
& =6 \frac{10 \div 4}{12 \div 4}=6 \frac{5}{6} \\
& =\frac{33}{24}-\frac{33}{24}-\frac{17}{24}
\end{aligned}
$$

d0
Calculate the following. Answers:
a. $5 \frac{1}{3}+1 \frac{2}{4}$
b. $4 \frac{3}{8}-3 \frac{4}{6}$
$=\frac{16}{3}+\frac{6}{4}=\frac{64}{12}+\frac{18}{12}=\frac{82}{12}$
$=\frac{35}{8}-\frac{22}{6}=\frac{105-88}{24}$
$=6 \frac{10}{12}=6 \frac{5}{6}$
$=\frac{17}{24}$

1,2 million goods are sold per annum. Answers: a. 1,2 million/1 200 000; b. 200000 ; c. 600000 ; d. 900000 ;
e. 1100000

What percentage of the circle is red?

Answer:

$\frac{1}{12}+\frac{1}{4}=\frac{1}{12}+\frac{3}{12}=\frac{4}{12}=\frac{1}{3}$

Objectives

Revise:

- Count forwards and backwards in decimal fractions to at least two decimal places
- Add and subtract decimal fractions with at least two decimal places

Dictionary

Decimal fraction: A decimal fraction is a fraction where the denominator (the bottom number in a common fraction) is a power of ten (such as 10, 100,1000, etc). Decimal fractions are written with a decimal comma (or point) and no denominator. This makes it a lot easier to do calculations like addition and multiplication with fractions. e.g. $2,45=2+0,4+0,05$ Ordering decimal fractions: Ordering decimal fractions can be in ascending order and descending order. e.g. 0,8; $0.73 ; 0,823$.
Ascending order: 0,$73 ; 0,8 ; 0,823$
Descending order: $0,823,0,8 ; 0,73$
Rounding (decimals): Rounding means to shorten a number and to increase or decrease the value of the last digit of the shortened number so that its value is similar to that of the original number, but easier to use. E.g.:

- 3,6 rounded off to the nearest unit is 4
- 2,32 rounded off to the nearest tenth is 2,3
- 1,738 rounded off to the nearest hundredth is 1,74

Equivalence between common fractions, decimal fractions and percentages: Common fractions, decimal fractions and percentage which have the same value but look different. E.g. $=\frac{25}{100}=0,25=25 \%$
Percent / Percentage: A value expressed as a fraction of 100. Symbol for percentage: \%. Percent means 'per hundred'.

Complete the table below by adding to or subtracting from the number given in the first column. Answers:

Number	$\begin{gathered} \text { Add } \\ 0,1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Add } \\ & 0,01 \end{aligned}$	$\begin{aligned} & \text { Add } \\ & 0,001 \end{aligned}$	Subtract 0,1	Subtract 0,01	Subtract 0,001
a. 0,657	0,757	0,667	0,658	0,557	0,647	0,656
b. 232,232	232,332	232,242	232,233	232,132	232,222	232,231

Fill in the missing number:
Answers: a. $32,4+0,5=32,9 \quad$ b. $8,452+0,04=8,492$
Add and then subtract to test your answer.
Answers:
a. $15,342=10+5+0,3+0,04+0,002$
b. $456,321=400+50+6+0,3+0,02+0,001$

Calculate the following using any method
$\left.\begin{array}{|ccccc}\hline \text { a. } & 5, & 3 & 2 & 6 \\ + & 4, & 5 & 4 & 2 \\ \hline & 9, & 8 & 6 & 8 \\ \hline \text { c. } & 3 & 2, & 2 & 4 \\ + & 1 & 9, & 3 & 8 \\ \hline & 5 & 1, & 6 & 2\end{array}\right)$

R9 Patterns

Topic: Numeric and geometric patterns Content links: 65-69
Grade 8 links: R7, 27-28 Grade 9 links: R7, 27-28

Objectives

Revise the following done in grade 6:

- recognize and use the commutative; associative; distributive property (identify element for addition)

Dictionary

Properties of number: Properties of number include the commutative associative and distributive properties. Note that these words were not introduced to learners in grade 6. These words will only be introduced in worksheets 1, 2, and 3

Replace the shape
Answers: These are examples of possible answers.
a. $5-5=0$
b. $30 \times 1=30$
c. $8+0=8$
d. $13-13=0$
e. $17 \times 1=17$

Complete the flow diagram:
Answers:
a. $0 ; 0 ; 0 ; 0 ; 0$ [When a number is subtracted from itself the result is 0.$]$
b. $8 ; 99 ; 387342 ; \frac{1}{8} ; 0,75$ [When 0 is added to or subtracted from a number, the number remains the same.]
xxvi
Learners should give five example for each statement. Discuss these examples in groups and write five examples of each on the board.

Complete the following:
Answers:
a. $4-4=0$
b. $0+15=15$
c. $100000 \times 1=100000$
d. $299999-299999=0$
e. $84934 \times 1=84934$

What is the value of \boldsymbol{x} ?
Answers:
$\begin{array}{lllll}\text { a. } 5 & \text { b. } 2,5 & \text { c. } 0,2 & \text { d. } 0 & \text { e. 4, } 5\end{array}$
If, $a=2, b=3$, and $c=10$, complete and calculate the sums. Answers:
a. $2+3,3+2$, Yes
b. $2 \times 3,3 \times 2$, Yes
c. $(2 \times 3) \times 10,2 \times(3 \times 10)$, Yes
d. $(2+3) \times 10,(2 \times 10)+(3 \times 10)$, Yes
e. $10 \times 1,1 \times 10$, Yes

Follow the order of operation to calculate each of the following: Answers:
a. $7-3+6=10$
b. $16+29-87=-42$
c. $(96 \div 16) \times 2=12$
d. $35 \div 5+(18-16)=9$
e. $14 \div(36-29)+11=13$

Follow the order of operation to calculate each of the following: Answers:
a. $2 \mathrm{a}+2 \mathrm{~b}$
$(2 \times 5)+(2 \times 2,5)$
$10 \mathrm{~cm}+5 \mathrm{~cm}$
$=15 \mathrm{~cm}$
b. $2 \mathrm{a}+2 \mathrm{~b}$
$(6,1 \times 2)+(3 \times 2)$
$12,2 \mathrm{~cm}+6 \mathrm{~cm}$
$=18,2 \mathrm{~cm}$

Reflection questions
Did learners meet the objectives?

Common errors

Make notes of common errors made by the learners.

R10 2-D shapes and 3-D objects

Objectives

Revision:

R10 2-D shapes and 3-D objects continued

Name the polygons below. Tick all the quadrilaterals.

pentagon

trapezium

triangle

square

octagon

rectangle

rhombus

hexagon
b. less than
c. more than

Answers:
a. less than
d. more than
g. less than
j. equal
m. equal
p. equal

xxxii

Make a tick in the correct answer column. [Or learners can use the < (less than) or > (more than) symbols to give their answers.]
Answers:

This shape can have:	1 right angle	2 right angles	$\begin{gathered} 3 \text { or more right } \\ \text { angles } \end{gathered}$	No right angles
Square			\checkmark	
Rhombus				\checkmark
Triangle	(V)			
Hexagon				(V)
Trapezium		(V)		(V)
Quadrilateral	(V)	(\checkmark)	(\checkmark)	(V)
Rectangle			\checkmark	
Octagon				\checkmark

[($\boldsymbol{\checkmark})$ symbol in brackets indicates that the presence or absence of a right angle or angles depends on the actual shape of the shape.]

R10 2-D shapes and 3-D objects continued

Learners answer the following questions: You know the lengths of 3 sides of a parallelogram: $12,5 \mathrm{~cm}, 7,5 \mathrm{~cm}$ and $7,5 \mathrm{~cm}$. Is that enough information to work out the length of the 4th side? If so, what is it? Make a drawing to support your answer.
Answers:

You know the lengths of 4 sides of a pentagon: $2,5 \mathrm{~cm}, 4,2 \mathrm{~cm}$, $3,5 \mathrm{~cm}$ and 6 cm . What will the 5th side be? Make a drawing to support your answer.

Answers: Answers will differ from learner to learner.

Draw the following: Answers:

R11 Transformations

Objectives

Revision:

- Recognise, describe and perform transformations.

Dictionary

Transformation: to change the form or appearance of something. There are many kinds of geometric transformations, including translations, rotations, reflections and enlargements.
Rotation: a transformation that moves points so that they stay the same distance from a fixed point, the centre of rotation,
Rotational symmetry: a figure has rotational symmetry if an outline of the turning figure matches its original shape.
Order of rotational symmetry: how many times an outline matches the original in one full rotation.
Reflection: a transformation that has the same effect as a mirror
Reflective symmetry: an object is symmetrical when one half is a mirror image of the other half.
Translation: a translation is the movement of an object to a new position without changing its shape, size or orientation.

Ask the learners if a reflection is a transformation which has the same effect as a mirror. What effect will the following have? - rotation, - translation, - enlargement

R11 Transformations continued

Topic: Transformations Content links: 86-94
Grade 8 links: R12, 121-126 Grade 9 links: R12, 105-113

To summarise what happens in question 2: When you enlarge a shape by a scale factor the area is enlarged by that scale factor squared. For example. The area of a square 2 cm by 2 cm is $4 \mathrm{~cm}^{2}$. Enlarge the square by a factor of 2 and you have a square 4 cm by 4 cm and an area of $16 \mathrm{~cm}^{2}=4^{2} \mathrm{~cm}^{2}$.

Slide the figure 4 right, 4 up
Answers:

Plot the coordinates $(9,9)$; $(6,8) ;(6,5) ;(9,5)$ and connect the points in order. Then slide 3 down and 5 left and draw the figure at these new coordinates. Answers:

Reflect the figure Answer:

R11 Transformations continued

Topic: Transformations Content links: 86-94 Grade 8 links: R12, 121-126 Grade 9 links: R12, 105-113

Draw a triangle with coordinates: $(4,8)$; (1,5); (4,2). Then draw its reflection across a reflection line with coordinates (5,9); (5,1). Write the coordinates of the new triangle. Answers: (6,8);(9,5);(6,2)

Rotate the figure by a quarter of a revolution around the point $(5,5)$. Answer:

Draw a half turn image of the figure: Triangle: (5,5); (1,5); (1,9)
Write down the new
coordinates.
Answers:
(5,5); (9,5); $(9,1)$
Answer: No.

Answer: Yes.
xxxvii

```
Problem solving
Draw a transformation using reflection, rotation and translation on one graph showing the movement from one figure to the next.
```

Answer:
(Here is an example of a figure that is: reflected,
then rotated -
clockwise by 90°, and
then translated 5
blocks to the left and
2 blocks down.)

R12 Area, perimeter and volume

Objectives

- Calculate the area and perimeter of 2-D shapes.
- Calculate the volume of a 3-D object.

Dictionary

Perimeter: The distance around a shape
Formula for a square: $4 l$
Formula for a rectangle: $2 l+2 b$
Area: The amount of surface of a two-dimensional shape.
Formula for a square: l^{2}
Formula for a rectangle: $l \times b$
Volume: The volume of an object is the amount of space it fills.
Formula for a cube: $l^{2} \times h$
Formula for a rectangular prism: $l \times b \times h$
Capacity: Similar in meaning to volume but it refers to the container of that space. So, for example, we speak of a vessel have the capacity to hold a certain volume of liquid.

Introduction

xxxvifi
Ask the learners to read through the comic strip, and answer the following questions:

- What is breadth? What is width? Are they the same?
- What is perimeter? What is area? What is length?

Calculate the perimeter and area of the following rectangles. Answers:
Perimeter Area
a. $21+2 \mathrm{~b}$
$=2(10 \mathrm{~cm})+2(8 \mathrm{~cm})$
$=20 \mathrm{~cm}+16 \mathrm{~cm}$
$=36 \mathrm{~cm}$
b. $21 \times 2 \mathrm{~b}$
$=2(10 \mathrm{~cm})+2(7,5 \mathrm{~cm})$
$=20 \mathrm{~cm}+15 \mathrm{~cm}=35 \mathrm{~cm}$

Area
$=1 \times b$
$=10 \mathrm{~cm} \times 8 \mathrm{~cm}$
$=80 \mathrm{~cm}^{2}$
$1 \times b$
$=10 \mathrm{~cm} \times 7,5 \mathrm{~cm}$
$=75 \mathrm{~cm}^{2}$

Topic: Size, area, perimeter and volume of 2-D shapes and 3-D objects Content links: R14, 52-64 Grade 8 links: R14-R15, 82-91
Grade 9 links: R14-R15, 60-64, 100-104

R12 Area, perimeter and volume cont...

If you have a rectangle with the following area, what could its length and breadth be? What is the perimeter? Area $=210 \mathrm{~m}^{2}$ Answer: These are some possible answers.

Length	Breadth	Perimeter	
15 m	14 m	58 m	Oral questions
21 m	10 m	62 m	After the learners have completed question 3, ask them what dimensions
30 m	7 m	74 m	they would choose if they had to build
70 m	3 m	146 m	a wall around the area in the most cost
10,5 m	20 m	61 m	effective way.
52,5 m	4 m	113 m	Answer: the dimensions with the shortest perimetre (61 m)

Sipho and his father are building a deck because the old one is too small. The old deck was $2,5 \mathrm{~m} \times 3 \mathrm{~m}$. They are going to double the dimensions of the deck. Answers:
a. Original area $=2,5 \mathrm{~m} \times 3 \mathrm{~m}$

New area $=(2,5 \mathrm{~m} \times 2) \times(3 \mathrm{~m} \times 2)$
Area $=5 \mathrm{~m} \times 6 \mathrm{~m}$

Complete the table below. Answers: Area $=30 \mathrm{~m}^{2}$
b. Original perimeter $=2,5 \mathrm{~m}+3 \mathrm{~m}+2,5 \mathrm{~m}+3 \mathrm{~m}$

New perimeter $=5 \mathrm{~m}+6 \mathrm{~m}+5 \mathrm{~m}+6 \mathrm{~m}$
Perimeter $=22 \mathrm{~m}$

| | If a rectangular prism | | |
| :--- | :--- | :--- | :--- | | These are some possible answers: | |
| :--- | :---: |
| Height | |
| has a volume of 36 | |

R13 Time

Objectives

- Read, tell and write time in 12-hour and 24-hour formats on both analogue and digital instruments
- Calculate elapsed time.

Dictionary

Measure: The use of standard units to find out size or quantity with regard to time, mass, capacity, length, temperature, perimeter, area and volume.

Digital: Refers to the use of digits/numbers. Digital time is shown on a clock or watch that shows numbers that are changed electronically in a little window (as opposed to a number
dial with long and short hands of time). This kind of clock is called a digital clock/watch. Example of digital time: 12:45

This is how long I took to complete my maths homework this week. Help me to complete this table. Answers:

Maths homework	Hours	Minutes	Seconds	hh:mm:ss	I started my homework at:	I finished it at:
Monday	1	30	1	$01: 30: 01$	$15: 00$	$16: 30: 01$
Tuesday	1	15	25	$01: 15: 25$	$15: 30$	$16: 45: 25$
Wednesday	1	27	17	$01: 27: 17$	$16: 30$	$17: 57: 17$
Thursday	0	55	45	$00: 55: 45$	$17: 45$	$18: 40: 45$
Friday	1	15	9	$01: 15: 09$	$14: 50$	$16: 05: 09$

I visited my grandmother over the weekend. On Saturday, I arrived 10:57:02 at her house. I left on Sunday at 13:45:05. How long was my visit to my grandmother?
Answers:
Saturday 10:57:02 to 24:00:00 = 13 hours 2 minutes and 58 seconds Sunday 00:00:00 to 13:45:05 = 13 hours 45 minutes and 5 seconds Total $=26$ hours 48 minutes and 3 seconds

Introduction

Ask leaners why:
0,5 hours = 30 minutes, not 50 minutes.
Learners give answers back in pairs. Give them enough time to get to an answer

R13 Time continued

| Complete the table. Answers: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weeks 1 1,5 2 2,5 3 3,5 4 4,5 5
 5,5 6
 Days 7 10,5 14 17,5 21 24,5 28 31,5 35
 38,5 42
 Hours 168 252 336 420 504 588 672 756 840
 924 1008
 Minutes 10080 15120 20160 25200 30240 35280 40320 45360 50400
 50440 60480 |

Convert years to weeks and days:
Answers:
a. $260(260,89)$ weeks and $1826(1826.25)$ days [Taking into account that there are 365,25 days a year. If a simpler formula of 52 weeks a year (instead of 52.18 weeks) is used then the answers are 260 weeks and 1820 days.]
b. $1330(1330,55)$ weeks and $9313(9313.875)$ days [Taking into account that there are 365,25 days a year. If a simpler formula of 52 weeks a year is used then the answers are 1326 weeks and 9282 days.]

Convert centuries to years:
Answers:

Did learners meet the objectives?

R14 Temperature, length, mass and capacity

Objectives

Convert:

- Length: mm, cm, m, km
- Mass: mg, g, kg, \dagger
- Capacity: ml; l; kl
- Measure temperature

Dictionary

Measure: The use of standard units to find out size or quantity with regard to time, mass, capacity, length, temperature, perimeter, area and volume.

Temperature: A measurement of how hot or cold something is. Measured with a thermometer. Measured in degrees Celsius temperature scale used in South Africa $\left({ }^{\circ} \mathrm{C}\right)$.

Length: A distance between two points. The measuring units used in the Intermediate Phase were: millimetre (mm), centimetre (cm) and kilometre (km).

Mass: This measures the amount of matter that makes up an object. It is similar to weight, but mass stays constant, while the weight measurement could change according to the gravity in the environment.

An object would be weightless in space, but still have the same mass as on earth. The measuring units used in the Intermediate Phase for mass are: gram (g), and kilogram (kg).

Capacity: The amount a container can hold. The measuring units used in the Intermediate Phase are: millilitre (ml) and litre (I).

Introduction

Ask the learners what the following is, give an example of each and with what do we measure it.

- Temperature
- Length
- Mass
- Capacity

Write down each temperature.

Answers:		
a. $-5^{\circ} \mathrm{C}$ b. $0^{\circ} \mathrm{C}$		
d. $2^{\circ} \mathrm{C}$ e. $-8^{\circ} \mathrm{C}$ g. $9^{\circ} \mathrm{C}$ h. $-3^{\circ} \mathrm{C}$	f. $-8^{\circ} \mathrm{C}$	
	i. $1^{\circ} \mathrm{C}$	

g. $9^{\circ} \mathrm{C}$
h. $-3^{\circ} \mathrm{C}$
i. $\quad 1^{\circ} \mathrm{C}$ less than $-8^{\circ} \mathrm{C}$

What is the difference in temperature shown in Question 1 between:
Answers:
a. $5^{\circ} \mathrm{C}$
b. $9^{0} \mathrm{C}$
c. $2^{0} \mathrm{C}$
d. $10^{\circ} \mathrm{C}$
e. $3^{\circ} \mathrm{C}$

R14 Temperature, length, mass and capacity continued

Answer the following questions about length.
Answers: a. 10 mm b. 100 cm c. 1000 mm d. 1000 m e.

		mm	cm	m	km
i.	9 cm	90	9	0,09	0,00009
ii.	3 m	3000	300	3	0,003
iii.	2 km	2000000	200000	2000	2
iv.	$10,5 \mathrm{~m}$	10500	1050	10,5	0,0105
v.	3600 mm	3600	360	3,6	0,0036

f. $2500-(450 \mathrm{~km}+565 \mathrm{~km}+900 \mathrm{~km})=2500-1915=585 \mathrm{~km}$

Answer the following questions on mass.
Answers: a. 1000 g b. 1000 kg c. 1000 mg d. 1000000 mg
e.

		mg	g	kg	\dagger
i.	3500 g	3500000	3500	3,5	0,0035
ii.	2 kg	2000000	2000	2	0,002
iii.	$2,5 \mathrm{~kg}$	2500000	2500	2,5	0,0025
iv.	$3 \dagger$	3000000000	3000000	3000	3
v.	5000000 mg	5000000	5000	5	0,005

R15 Probability

Topic: Probability Content links: N137-140 [13-136] Grade 8 links: 135-138 Grade 9 links: 138-143

Objectives

- Perform simple experiments where the possible outcomes are equally likely and:
- List the possible outcomes based on the conditions of the activity

Dictionary

Probability: Probability refers to the chance or likelihood of something happening.
Outcome: An outcome (in this context) is the result of a single trial of an experiment.

R15 Probability continued
c
Draw a card from the bag and record it below. Place the card back into the bag. Do this 100 times.

Letter on the card	Times landed on the letter
x	
y	
z	
m	
a	
b	
k	

Compare your answers with your friend. Are they the same? Why?

Drawing a number \times card from the bag has a probability of 1 out of 10. We can write it as

Answers:

Answers:
$\mathrm{y}=\frac{1}{10} \quad \mathrm{z}=\frac{1}{10} \quad \mathrm{~m}=\frac{2}{10} \quad \mathrm{a}=\frac{3}{10} \quad \mathrm{~b}=\frac{1}{10} \quad \mathrm{k}=\frac{1}{10}$

R16 Data

Topic: Data handling Content links: 126-136 Grade 8 links: R16, 92-104 Grade 9 links: R16, 123-137

Objectives

- Revise the data handling process.

Dictionary

Data: A complete set of individual pieces of information or facts that have been collected, but have not yet been interpreted.

Data handling: This is a process. It begins with a question. The purpose of collecting data is to find the answer to this question. Learners should be given the opportunity to collect data to answer 'real' questions related to the learners' experience.

It is possible to use data from first-hand (primary) sources when the data is collected by the learners directly. Data can also come from second-hand (secondary) sources such as prepared databases, reference books, newspapers, registers, weather statistics and so on.

Learners look at the data handling diagram and explain it with the support of the teacher.

b. People saved money during the year to replace their car at the end of the year.
c. The data was collected. Then it was organised and represented in the pictograph. Then it will be interpreted (as Question 1b. asks the learner to do).

R16 Data continued

Topic: Data handling Content links: 126-136 Grade 8 links: R16, 92-104 Grade 9 links: R16, 123-137

Answers:

Colour	Tally	Frequency	
Red		93	
Purple		70	
Blue		65	
Green		59	
Yellow		37	
Black	相 H 䌶 \|		17
Total		341	

1 Commutative property of addition and multiplication

Objectives

- Recognise and use the commutative property of whole numbers

Dictionary

Commutative property: The commutative property of addition and multiplication says that you can swap numbers around and still get the same answer when you add or multiply.

Equation: An equation says that two things are the same, using an equal sign (=). E.g. : 7 + 4 = 11-1

2

Introduction

Commutative property of addition and multiplication

Are the following true or false?
$3+4=4+3$
$3 \times 4=4 \times 3$
$20+5=5+20$
$20 \times 5=5 \times 20$
What do you notice?

The commutative property of addition and multiplication says that you an swap numbers multiplication says that you can swap numbers
around and still get the same answer when yo add or multiply. The order in which you combine the numbers does not matter.

An equation says that two things are the same using an equal sign ($=$), e.g. $7+4=12-1$

Use the commutative property of addition or multiplication to make the equations true.

Example: $5+1=1+5$ (addition) and $5 \times 1=1 \times 5$ (multiplication)
Answers:
a. $13+2=2+13$
b. $62+31=31+62$
c. $4 \times 5=5 \times 4$
d. $7 \times 9=9 \times 7$
e. $9 \times 8=8 \times 9$
f. $12 \times 15=15 \times 12$
g. Learner's own answers

Use the commutative property of addition or multiplication to make the equations true.
Example: $f+e=e+f$ (addition) and $f x e=e x f$ (multiplication)

Answers:

a. $a+b=b+a$
b. $c \times d=d \times c$
c. $m \times n=n \times m$
d. $h+g=g+h$
e. $l \times p=p \times l$
f. $s \times t=t \times s$
g. Learner's own answers

1 Commutative property of addition and multiplication continued

Show that the given equations are equal when you substitute, $a=2, b=5$ and $c=3$

Example: $a+b=b+a$	(addition)
$a+b=2+5$	and
$=7$	$b+a=5+2$
$=7$	$=7$
$a+b=b+a$	

$a \times b$	$=b \times a$		(addition)
$a \times b$	$=2 \times 5$	and	$b \times a=5 \times 2$
	$=10$		
$a \times b$	$=b \times a$		

Answers:
a. $c+a=c+a$
$3+2=2+3$
$5=5$
b. $\begin{aligned} c \times a & =a \times c \\ 3 \times 2 & =2 \times 3\end{aligned}$
$6=6$
c. $\quad b \times a=a \times b$
$5 \times 2=2 \times 5$
$10=10$
d. $b+a=a+b$
$5+2=2+5$
$7=7$
e. $b \times c=c \times b$
$5 \times 3=3 \times 5$
$15=15$
f. $\quad b+c=c+b$ $5+3=3+5$ $8=8$

Write an equation to show how each diagram illustrates the commutative property of multiplication.
Answers:
a. $4 \times 3=3 \times 4$
b. $5 \times 6=6 \times 5$
c. $6 \times 2=2 \times 6$
d. $4 \times 1=1 \times 4$

2 Associative property of addition and multiplication

Objectives

- Recognise and use the associative property of number.

Dictionary

Associative property: The associative property of addition and multiplication says that it doesn't matter how you group numbers when you add or multiply.

Use the associative property of addition or multiplication to make the statements true.

Example: $(5+1)+3=5+(1+3)$ (addition)
$(5 \times 1) \times 3=5 \times(1 \times 3)$ (multiplication)
Answers:
a. $(6+2)+4=6+(2+4) \quad 12=12$
b. $(7+3)+1=7+(3+1) \quad 11=11$
c. $8 \times(10 \times 4)=(8 \times 10) \times 4 \quad 320=320$
d. $4 \times(5 \times 2)=(4 \times 5) \times 2 \quad 40=40$
e. $(11 \times 3) \times 2=11 \times(3 \times 2) 66=66$
f. $(12 \times 2) \times 4=12 \times(2 \times 4) 96=96$

Use the associative property of addition to make the statements true.

Example: $f+(g+h)=(f+g)+h$ (addition)
$f \times(g \times h)=(f \times g) \times h$ (multiplication)

Answers:
a. $a+(b+c)$
b. $m+(n+c)$
c. $g \times(h \times i)$
d. $c \times(d \times f)$
e. $k \times(z \times d)$
f. $\quad a+(d+v)$
g. $a \times(c \times d)$
i. $\quad v+(c+r)$
h. $k \times(l \times m)$

2 Associative property of addition and multiplication continued

Solve if $a=2, b=4$ and $c=3$
Examples: $a+(b+c)=(a+b)+c$

$$
\begin{aligned}
& 2+(4+3)=(2+4)+3 \\
& 2+7=6+3 \\
& 9=9 \\
& \therefore a+(b+c)=(a+b)+c
\end{aligned}
$$

$$
\begin{aligned}
& a \times(b \times c)=(a \times b) \times c \\
& 2 \times(4 \times 3)=(2 \times 4) \times 3 \\
& 2 \times 12=8 \times 3 \\
& 24=24 \\
& \therefore a \times(b \times c)=(a \times b) \times c
\end{aligned}
$$

Answers:
a. $(c+a)+b=c+(a+b)$
$(3+2)+4=3+(2+4)$
$5+4=3+6$
$9=9$
$\therefore(c+a)+b=c+(a+b)$
c. $b \times(c \times a)=c \times(a \times b)$
$4 \times(3 \times 2)=3 \times(4 \times 2)$
$4 \times 6=3 \times 8$
$24=24$
$\therefore b \times(c \times a)=c \times(a \times b)$
b. $(b \times a) \times c=a \times(b \times c)$ $(4 \times 2) \times 3=2 \times(4 \times 3)$ $8 \times 3=2 \times 12$
$24=24$
$\therefore(b \times a) \times c=a \times(b \times c)$
d. $b+(c+a)=(b+c)+a$ $4+(3+2)=(4+3)+2$
$4+5=7+2$
$9=9$
$\therefore b+(c+a)=(b+c)+a$

If $m=1, n=7$ and $q=2$, show that the equations are equal. Answers:
a. $(q+m)+n=q+(m+n)$
$(2+1)+7=2+(1+7)$
$3+7=2+8$
$10=10$
$\therefore(q+m)+n=q+(m+n)$
b. $(n \times m) \times q=m \times(n \times q)$
$(7 \times 1) \times 2=1 \times(7 \times 2)$
$7 \times 2=1 \times 14$
$14=14$
$\therefore(q+m)+n=q+(m+n)$
c. $n \times(q \times m)=q \times(n \times m)$
$7 \times(2 \times 1)=2 \times(7 \times 1)$
$7 \times 2=2 \times 7$
$14=14$
$\therefore n \times(q \times m)=q \times(n \times m)$
d. $n+(q+m)=(n+q)+m$ $7+(2+1)=(7+2)+1$ $7+3=9+1$
$10=10$ $\therefore n+(q+m)=(n+q)+m$

5
Problem solving
If $a=25, b=30$ and $c=10$, write an associative property of addition and multiplication statement and

Answer: Example answers are:
$a+(b+c)=(a+b)+c$
$a \times(b \times c)=(a \times b) \times c$
$25+(30+10)=(25+30)+10$
$25+40=55+10$
$25 \times(30 \times 10)=(25 \times 30) \times 10$
$65=65$
$25 \times 40=750 \times 10$
$7500=7500$
Reflection questions
Did learners meet the objectives?

3 Distributive property of multiplication over addition

Objectives

- Recognise and use the distributive property of numbers.

Dictionary

Distributive property: You will get the same answer when you multiply a group of numbers added together as when you do each multiplication separately and then add them together.
e.g. $2 \times(3+4)=(2 \times 3)+(3 \times 4)$
$a(b+c)=(a \times b)+(a \times c)$

Introduction

d
Use the distributive property to write a sum for each diagram so that you can calculate the total number of blocks in each drawing.
Answers:

b.

$(2 \times 4)+(2 \times 6)$
$2(4+6)$

c.

3 Associative property of multiplication over addition continued

Use the distributive property of multiplication to make these statements true.

Example: $4(5+9)=(4 \times 5)+(4 \times 9)$
Answers:
a. $3(4+2)=(3 \times 4)+(3 \times 2)$
b. $10(2+3)=(10 \times 2)+(10 \times 3)$
c. $5(3+1)=(5 \times 3)+(5 \times 1)$

Use the distributive property of multiplication to make these statements true.

Example: $4 \times 5+4 \times 3=(4 \times 5)+(4 \times 3)=4(5+3)$
a. $(3 \times 2)+(3 \times 5)$

$$
=3(2+5)
$$

$$
=3 \times 7=21
$$

b. $(6 \times 1)+(6 \times 4)$ $=6(1+4)$
$=6 \times 5=30$

c. $(3 \times 2)-(3 \times 1)$ $=3(2-1)$ $=3 \times 1=3$

If $a=3, b=2$ and $c=4$, calculate the following:

Example: $a(b+c)=a \times b+a \times c$
$3(2+4)=3 \times 2+3 \times 4$
$3(6)=6+12$
$18=18$
a. $b(a+c)=(b \times a)+(b \times c)$ $2(3+4)=(2 \times 3)+(2 \times 4)$ $2(7)=6+8$ $14=14$
b. $c(b+a)=(c \times b)+(c \times a)$ $4(2+3)=(4 \times 2)+(4 \times 3)$ $4(5)=8+12$ $20=20$
c. $a(c+b)=(a \times c)+(a \times b)$ $3(4+2)=(3 \times 4)+(3 \times 2)$ $3(6)=12+6$ $18=18$

Problem solving
If $a=5, b=9$ and $c=11$, write a distributive property statement and calculate the answe.

Answer:		
$a(b+c)$	or	$b(a+c)$
$=5(6+11)$		$=9(5+11)$
$=(5 \times 9)+(5 \times 11)$		$=(9 \times 5)+(9 \times 11)$
$=45+55$		$=45+99$
$=100$		$=144$

Zero as the identity of addition, one as the identity of multiplication, and other properties of numbers continued

Objectives

- Recognise and use 0 in terms of additive property (identify element for addition)
- Recognise and use 1 in terms of its multiplicative property (identify element for multiplication).

Dictionary

Zero the identify of addition:
The answer will always be the number that zero is added to, e.g. $4+0=4 ; 0+9=9$

One as the identify of multiplication:
The answer will be the number that one is multiplied by e.g. $4 \times 1=4 ; x \times 1=x$

8

Introduction

What do you notice?

$3+0=$	$5+0=$	$100+0=$
$0+16=$	$0+250=$	$72+0=$

Zero as sum of zero and any number is the The sum of zero and any number is the the number that zero is added to.

Use zero as the identity of addition, or one as the identity of multiplication to write a sum for the following: Answers:

		Zero as the identity of addition	One as the identity of multiplication
a.	5	$5+0=5$	$5 \times 1=5$
b.	7	$7+0=7$	$7 \times 1=7$
c.	9	$9+0=9$	$9 \times 1=9$
d.	100	$100+0=100$	$100 \times 1=100$
e.	34	$34+0=34$	$34 \times 1=34$
f.	2,5	$2,5+0=2,5$	$2,5 \times 1=2,5$
g.	0,1	$0,1+0=0,1$	$0,1 \times 1=0,1$

Use zero as the identity of addition, or one as the identity of multiplication to solve the following:
Answers:
a. $b+0=b$
b. $d \times 1=d$
c. $e \times 1=e$
$b \times 1=b$
$d+0=d$
$e+0=e$

Choose the correct property of number to write an equivalent statement to complete the equation.
Answers:
b. $2(3+9)=(2 \times 3)+(2 \times 9)$
c. $3+(4+8)=4+(8+3)$
d. $5(9-8)=(5 \times 9)-(5 \times 8)$
e. $9+12=12+9$
f. $(2 \times 5) \times 11=2 \times(5 \times 11)$

	Say if the following is true or false. If it is false, explain why it is false. Answers: a. True b. False (commutative property does not apply to subtraction) c. True d. True e. False (associative property does not apply to subtraction) f. True If $a=2, b=5, c=8$, solve the following: Answers: a. $\begin{aligned} & a+c=c+a \\ & 2+8=8+2 \\ & 10=10 \end{aligned}$ b. $\begin{aligned} & b+(c+a)=(b+c)+a \\ & 5+(8+2)=(5+8)+2 \\ & 5+10=13+2 \\ & 15=15 \end{aligned}$ c. $a+0=2+0$ d. $=2$ $\begin{array}{lll} b(a+c) & \text { or } & b(a+c) \\ =5(2+8) & =5(2+8) \\ =5(10) & =(5 \times 2)+(5 \times 8) \\ =50 & =10+40 \\ & =50 \end{array}$ e. $a(c-b)$ or $a(c-b)$ $=2(8-5)=2(8-5)$ $\begin{aligned} \text { f. } & b \times 1 \\ & =5 \times 1 \end{aligned}$ $=2(3) \quad=(2 \times 8)-(2 \times 5) \quad=5$ $=6 \quad=60-10$ $=6$

Match column A with column B
Answers:
Column A

Column B

Associative property of numbers

Distributive property of numbers Zero as the identity of addition
One as the identity of multiplication $a(b+c)=(a \times b)+(a \times c)$

Answers:

a. 0
b. 1

True (Possible answers)
False (Possible answers)
c. i. $\quad a=a+0$
i. $\quad 0=a+0$
ii. $a+1=1+a$
iii. $a \times b=b$
iii. $a+b=b+a$
iii. $a-b=b-a$
iv. $a \times c=c \times a$
iv. $a \div c=c \div a$
v. $b=b \times 1$
v. $a-1=1-a$

Multiples

Objectives

- Multipless of 2-digit and 3-digit whole numbers
- Find the LCM of numbers to at least 3-digit whole numbers

Dictionary

Multiples: The products of natural numbers (1, 2, 3, 4, 5, ...) are called the multiples of the number. Multiples are the results of multiplying by an integer, e.g. $3 \times 2=6.6$ is a multiple of 2 and 3 . The multiples of 6 are 6, 12, 18, 24...

Introduction

Use the number board to complete the following

Example: The multiples of 6 are $6,12,18, \ldots 72$, or
We can write it as multiples of 6 : $\{6,12,18,24,30,36,42,48,54,60,66,72\}$

Answers:

a. Multiples of $4:\{4,8,12,16,20,24,28,32,36,40\}$
b. Multiples of $7:\{7,14,21,28,35,42,49,56,63,70\}$
c. Multiples of $5:\{5,10,15,20,25,30,35,40,45,50\}$
d. Multiples of $8:\{8,16,24,32,40,48,56,64,72,80\}$
e. Multiples of 2: $\{2,4,6,8,10,12,14,16,18,20\}$
f. Multiples of $9:\{9,18,27,36,45,54,63,72,81,90\}$

5 Multiples continued

Write down the first 12 multiples of the numbers below. Circle all the common multiples and identify the lowest common multiple (LCM).

Example: Multiples of $2: 2$, (4. 6, (8.) 10 , (12.) 14, (16.) $18,20,22,24$ Multiples of 4: (4, (8, (12.) (16.) (20.) (24.) $28,32,36,40,44,48$ The LCM is 4 .

Answers

a. Multiples of 5 : $\{5,10,15,20,25,30,35,40,45,50\}$ Multiples of 10: \{10, $20,30,40,50,20,24,28,32,36\}$ LCM = 10
b. Multiples of 5 : $\{5,10,15,20,25,30) 35\}$ Multiples of 6: $\{6,12,24,30,36\}$
LCM $=30$
c. Multiples of 90 : $\{90,180,270,360,450,540,630,720,810,900$, 990, 1080$\}$
Multiples of 20: $\{20,40,60,80,100,120,140,160,180$ 200, 220, 240\}
LCM $=72$

What is the LCM for the following?
Answers
a. Multiples of 2 and Multiples of 8

Multiples of 2: $\{2,4,6,8,10,12,14,16, \ldots\}$ Multiples of 8: $\{8,16,24,32, \ldots\} \quad$ LCM $=8$
b. Multiples of 3 and Multiples of 6 :

Multiples of 3: $\{3,9,12,15,18, \ldots\}$ Multiples of 6: $\{6,12,18,24,30,36, \ldots\} \quad$ LCM $=6$
c. Multiples of 5 and Multiples of 3 :

Multiples of $3:\{3,6,9,12,15,18,21,24, \ldots\}$
Multiples of 5: $\{5,10,15$) $20,25,30,35,40, \ldots\} \quad$ LCM $=15$
d. Multiples of 4 and Multiples of 8 :

Multiples of 4: $\{4,8,12,16,20,24, \ldots\}$
Multiples of 8: 8. $16,24,32,40, \ldots\} \quad$ LCM $=8$
e. Multiples of 70 and Multiples of 60 :

Multiples of $70:\{70,140,210,280,350,420,490, \ldots\}$
Multiples of $60:\{60,120,180,240,300,360,420,480, \ldots\} \quad$ LCM $=$
f. Multiples of 100 and Multiples of 125:

Multiples of 100: $\{100,200,300,400,500,600, \ldots\}$
Multiples of 125: $\{125,250,375,500625, \ldots\} \quad$ LCM $=500$
come in multiples. Give five home.

Answers:
a. knives and forks; b. cups; c. chairs; d. glasses; e. windows; f. eggs

Objectives

- Revise factors of 2-digit whole numbers
- Prime factors
- List prime factors of numbers to at least 3-digit whole numbers.
- Find the HCF of numbers to at least 2-digit whole numbers

Dictionary

Factors: Factors are the whole numbers you multiply together to get another whole number, in other words a whole number that divides exactly into another whole number is called a factor of that number. e.g. 3 and 4 are factors of 12 , because $3 \times 4=12$

HCF: Highest common factor E.g. The highest common factor of 2, 3 and 4 is 12 .

12

Introduction

Learners need to find the missing information.
Your little brother messed up your notes. Find the missing information.
A number is divisible b浸: if the number formed by the last three digits is divisible by 8 .
A number is divisible by 3 if the sum of the digits is divisible by 3 .
A number is divisible by 10 if the last digitit is?:
A number is divisible by bijif the last digit is either 0 or 5 .
A number is divisible by 4 if the number formed by the last two digits is divisible byith
A number is divisible by 9 if the sum of the digits is divisisle
A number is divisible by 9 if the sum of the digits is divisible by
A number is divisible byw.if the last digiti is $0,2,4,6$ or 8 .
A number is divisible by 6 if it it divisible by 2 and it is divisible by 3 .

For each of the numbers given below, write down:
(i) All the possible multiplication sums using only two numbers that will give you this number.
(ii) All the numbers used in these multiplication sums, in ascending order (but do not repeat a number).
(iii) Complete the sentence: "These are the factors of \qquad
(iv) Complete the sentence: "Factors of \qquad = \{ _ \}. \}." Answers
a. i. $18: 1 \times 18 ; 2 \times 9 ; 3 \times 6$
ii. $1 ; 2 ; 3 ; 6 ; 9 ; 18$
iii. These are the factors of 18
iv. Factors of $18=\{1 ; 2 ; 3 ; 6 ; 9 ; 18\}$
b. i. $25: 1 \times 25 ; 5 \times 5$
ii. $1 ; 5 ; 25$
iii. These are the factors of 25
iv. Factors of $25=\{1 ; 5 ; 25\}$
c. i. $36: 1 \times 36 ; 2 \times 18 ; 3 \times 12 ; 4 \times 9 ; 6 \times 6$
ii. $1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 18 ; 36$
iii. These are the factors of 36
iv. Factors of $36=\{1 ; 3 ; 6 ; 9 ; 12 ; 18 ; 36\}$

Complete the following, using the example to guide you.
Example: i. Factors of 12 are (1, 2, 3, 4, 6 and 12 Factors of 30 are 1) 2, 2, 5, 6, 10, 15 and 30 The common factors are: $1,2,3,6$ iii. The highest common factor is 6 .
 fraction is HC

a. i. Factors of 8: $\{1,2,4,8\}$ Factors of $16:\{1,2,4,8,16\}$
ii. $1,2,4,8$
iii. 8
b. i. Factors of $3:\{1,3\} \quad$ Factors of $12:\{1,2,3,4,6,12\}$
ii. 1,3
iii. 3
c. i. Factors of $3:\{1,3\} \quad$ Factors of $9:\{1,3,9\}$
ii. 1,3
iii. 3

Complete the table.		Words	Factors	Common factors	HFC
	$\begin{array}{\|l\|} \hline \text { a. } 4 \text { and } \\ 8 \end{array}$	Factors of 4 and Factors of 8	$\begin{aligned} & 1,2,4 \\ & 1,2,4,8 \end{aligned}$	1, 2, 4,	4
	b. 9 and 12	Factors of 9 and Factors of 12	$\begin{aligned} & 1,3,9 \\ & 1,2,3,4,6,12 \end{aligned}$	1,3	3
	C. 4 and 28	Factors of 4 and Factors of 28	$\begin{aligned} & 1,2,4 \\ & 1,2,4,7,14,28 \end{aligned}$	1,2,4	4
	d. 12 and 36	Factors of 12 and Factors of 36	$\begin{aligned} & 1,2,3,4,6,12 \\ & 1,2,3,4,6,12,18,36 \end{aligned}$	$\begin{aligned} & 1,2,3,4,6 \\ & 12 \end{aligned}$	12

When in everyday life do we use HCF?
Answer: When we use the HCF to simplify fractions. For example, hot dog viennas sometimes come in packs of 10 , while bread rolls come in either 6 or 12 . What is the smallest number of each you have to buy to have the same number of each.

Objectives

- Compare two or more quantities of the same kind (ratio)
- Solve problems by sharing in a given ratio where the whole is given
- Solve problems to find a percentage of a whole

Dictionary

Ratio: A ratio compares the size, or magnitude, of two or more numbers of the same kind.

Part-to-part ratio: E.g. In a group of 4 children (the whole) there is a part-to-part ratio of 1 boy to 3 girls, written as 1:3

Part-to-whole ratio: E.g, In a group of 4 children (the whole) there is 1 boy in the 4 children, written as 1:4, and 3 girls in the 4 children, written as 3:4.

Part-to-whole ratios can also be written as fractions or percentages, e.g. The ratio of boys to all children in the class is $1: 4$ or $\frac{1}{4}$ or 25%.

The ratio of girls to all children in the class is $3: 4$ or $\frac{3}{4}$ or $75 \% 75$.

Introduction

14
Remember that a ratio is a comparison between two numbers. Discuss the diagram at the top of page 14 with the learners.

Write the following ratios as percentages.

Example: 3:7

Ex the same as $\frac{3}{10}$ and $\frac{7}{10}=0,3$ and 0,7 = 30% and 70%

Answers:
a. $\begin{aligned} & 4: 6 \\ & =\frac{4}{10} \text { and } \frac{6}{10}\end{aligned}$
$=0,4$ and 0,6
$=40 \%$ and 60%
b. $\begin{aligned} & 2: 8 \\ & =\frac{2}{10} \text { and } \frac{8}{10}\end{aligned}$
$=0,2$ and 0,8 $=20 \%$ and 80%
C. $5: 5$
$=\frac{5}{10}$ and $\frac{5}{10}$
$=0,5$ and 0,5 $=50 \%$ and 50%
d. $12: 13$
$=\frac{12}{25} \times \frac{4}{4}$ and $\frac{13}{25} \times \frac{4}{4}$
$=\frac{48}{100}$ and $\frac{52}{100}$
$=0,48$ and 0,52
$=48 \%$ and 52%
e. 20:30
$=\frac{20}{50} \times \frac{2}{2}$ and $\frac{30}{50} \times \frac{2}{2}$
$=\frac{40}{100}$ and $\frac{60}{100}$
$=0,40$ and 0,60
$=40 \%$ and 60%
f. $\begin{aligned} & 1: 3 \\ & =\frac{1}{4} \times \frac{25}{25} \text { and } \frac{3}{4} \times \frac{25}{25}, ~\end{aligned}$
$=\frac{25}{100}$ and $\frac{75}{100}$
$=0,25$ and 0,75
$=25 \%$ and 75%

Multiply the denominator and numerator (the top and bottom respectively) with the same number (in this case 4 because $25 \times 4=100$) to get the fraction out of 100).

Solve the problems.
Answers:
a. Red $:$ Green $=6: 4 \quad \frac{6}{10}$ are red; $\frac{4}{10}$ are green.
0,6 are red and 0,4 are green.
60% red and 40% green.
b. If side $=2$ units then the area will be 2^{2} units $=4$ square units.

Double the side will be 4 units and then the area will be 16 square units.
\therefore when side of square is doubled the area will increase
$=4$ times.
The ratio of the Area of the original: Area of new will be:
$4: 16$ or $1: 4=\frac{1}{5}$ and $\frac{4}{5}=0,2$ and $0,8=20 \%$ and 80%

Problem solving
There are 600 pupils in a school. The ratio of boys to girls in this school is $9: 11$. How many girls and how
many boys are in this school? many boys are in this schoola

Answers:
Boys: $\frac{9}{20} \times 600=270$
Girls: $\frac{11}{20} \times 600=330$
Reflection questions
Did learners meet the objectives?

8 Rate

Topic: Ratio and rate Content links: 7, 12-13 Grade 8 links: 8-10 Grade 9 links: 3

Objectives

- Solve rate problems

Dictionary

 of the same kind.- Compare two quantities of different types (that are related to each other in some other way) (Rate)

Ratio: A ratio compares the size, or magnitude, of two or more numbers

Rate: A ratio that compares quantities of different types (that are related to each other in some way) is called a rate.
Examples: R4/kg, R30/l (litres symbol), R15/km, R100/hour
Ratio examples:

- Juice concentrate and water
- Two gears
- Left handed people to right handed people
- Recipes: sugar to margarine
- Ratio of two different sized paintings

Rate examples:

- Rand per kilogram
- Rand per volume
- Rand per mass
- Rand per length
- Kilometres per hour

Find the unit rate.

Example: 50 hamburgers in 10 days $=\mathbf{5}$ hamburgers per day.
Answers:
a. 8
b. 12
c. 6
d. 8
e. 40 workbooks and then give another five
Look at the ratio and rate examples. Give another 5 real-life examples.

Find the unit rate for each.
Example: $\frac{600 \text { kilometres }}{600 \text { litres }}=\frac{10 \text { kilometrers }}{1 \text { litre }}=10$ kilometres/litre
Answers:
a. R2/kg
b. $10 \mathrm{~m} / \mathrm{s}$
c. R25/l
d. $30 \mathrm{~km} / \mathrm{h}$

8 Rate continued

Solve the following. Show all calculations.
Answers:
a. (120 leaves)/(4 hours)
$=120 \div 4$
$=30$ leaves $/$ hour
c. $(9$ goals $) /(5$ matches $)$
$=9 \div 5$
$=1,8$ goals $/$ match
b. (1 000 km$) /(100$ litres)
$=1000 \div 100$
$=10 \mathrm{~km} / \mathrm{litre}$
d. Rate $=120 \mathrm{~m} / \mathrm{h} \times 4$ $=120 \times 4$
$=480$ metres after 4 hours

We use rate on a daily basis. Give five examples and then write it as an unit rate.
Answer: Here are some examples:

Rate daily example	Unit rate	
a. We travelled 5 km to school, and it took us 10 minutes.	$30 \mathrm{~km} / \mathrm{h}$ or $2 \mathrm{~m} / \mathrm{km}$	
b. R 100 for 2 kg meat $=100 \div 2=\mathrm{R} 50 / \mathrm{kg}$	R50/kg	
c. R 100 for 10 litres petrol $=100 \div 10=\mathrm{R} 10 /$ litre	R10/litre	
d. We buy 4 cartons of milk and get 2 for free. $4 \div 2=2$	Buy 2 and get 2 free	
e. We buy 15 loaves of bread for 10 people. $15 \div 10=1,5$	1,5 loaves per person	

Objectives

Solve problems that involve whole numbers, percentages and decimal fractions in financial context

Dictionary

Money in South Africa: The rand, sign: R; code: ZAR, is the currency of South Africa. It takes its name from the Witwatersrand the ridge upon which Johannesburg is built and where most of South Africa's gold deposits were found. The rand has the symbol "R" and is equal to 100 cents, symbol "c".

Introduction

Ask the learners what the currency was before Rand and cents.
1652 - 1800: Reals, Rix dollars, VOC 1800 to 1923: Coin of the British realm 1874: Burgerspond
1874 - 1932: Strachan and Co token
1892 to 1901 Kruger coinage
1902: Veld pond
1823 - 1964 South African pounds, shillings and pence
1932: Gold standard dropped and token coins outlawed

9 Money in South Africa continued

If these were the results of the numbers your dice landed on how much money do you have at the end of the game. After each result use a number sentence or word sum to describe what happened. Answers: Here is an example of how things might go.

Number on dice	Number sentence or word sum
$\mathbf{6}$	Earns R20
$\mathbf{6}$	$\mathrm{R} 20+\mathrm{R} 100=\mathrm{R} 120$
$\mathbf{3}$	$\mathrm{R} 120+\mathrm{R} 200=\mathrm{R} 320$
$\mathbf{6}$	$\mathrm{R} 320+\mathrm{R} 100=\mathrm{R} 420$
$\mathbf{2}$	$\mathrm{R} 420+\mathrm{R} 100=\mathrm{R} 520$
$\mathbf{6}$	$\mathrm{R} 520+\mathrm{R} 0=\mathrm{R} 520$
$\mathbf{3}$	$\mathrm{R} 520+\mathrm{R} 0=\mathrm{R} 520$
$\mathbf{2}$	$\mathrm{R} 520+\mathrm{R} 0=\mathrm{R} 520$
$\mathbf{5}$	$\mathrm{R} 520+\mathrm{R} 0=\mathrm{R} 520$
$\mathbf{5}$	$\mathrm{R} 520+\mathrm{R} 0=\mathrm{R} 520$
$\mathbf{6}$	$\mathrm{R} 520+\mathrm{R} 50=\mathrm{R} 570$
$\mathbf{2}$	$\mathrm{R} 570+\mathrm{R} 0=\mathrm{R} 570$
$\mathbf{4}$	$\mathrm{R} 570+\mathrm{R} 20=\mathrm{R} 590$
$\mathbf{2}$	$\mathrm{R} 590+\mathrm{R} 200=\mathrm{R} 790$
$\mathbf{6}$	$\mathrm{R} 790-\mathrm{R} 100=\mathrm{R} 690$

Term 1

10 Finances - profit, loss and discount

Objectives

- Solve problems that involve whole numbers, percentages and decimal fractions in financial contexts such as profit, loss and discount
- Use rounding off in calculations involving money

Dictionary

Profit is the surplus remaining after total costs are deducted from total revenue.
Loss is the excess of expenditure over income.
Discount is the amount deducted from the asking price before payment.

Ask the learners the following:

20
Do you know the meaning of profit, loss and discount? Ask them or give the learners some examples.
Tell learners that: Remember profit and loss do not only apply to businesses, but also to your personal income.

Learners must if they are making a profit or a loss in the examples and how much.
Answers:
a. Profit $=$ Income - Expenses

Profit $=65 c-45 c=20 c$
b. Profit $=$ Income - Expenses

Profit per pencil $=$ R2,40 - R2,00 $=40 \mathrm{c}$
Profit on pencils $=40 \mathrm{c} \times 40=$ R16,00
c. Profit $=$ Income - Expenses

Profit on juices $=(\mathrm{R} 2,50 \times 40)-(\mathrm{R} 1,50 \times 40)=\mathrm{R} 100-\mathrm{R} 60=\mathrm{R} 40$
Stall expenses $=$ R50
Profit $=$ R40 - R50 $=-$ R10
Loss $=$ R10
d. Profit $=$ Income - Expenses

Sales of sweets $=30 \mathrm{c} \times 75=\mathrm{R} 22,50$
Cost of packet of sweets $=$ R10,45
Profit $=$ R22,50 - R10,45 $=$ R12,05
[If the cost of only 75 sweets, not the whole packet, is considered, then the cost per sweet is less, $7,8375 \mathrm{c}$ as against $10,45 \mathrm{c}$ and the profit is R14,6625 (rounded to R14.66)]

10 Finances - profit, loss and discount cont...

e. Profit $=$ Income - Expenses

Number of bananas $=3 \times 12 \times 12=432$
Number sold $=432 \times 80=345,6=346$ (work with whole bananas)
Sales of bananas $=346 \times 65 \mathrm{c}=$ R224,90
Cost of bananas $=3 \times$ R75 $=$ R225
Profit $=$ R224,90 - R225 $=-10 c$
Loss $=10 \mathrm{c}$
[Loss $=36 \mathrm{c}$ if the tally of banana is not rounded off.
Cost of bananas $=3 \times$ R75 $=$ R225
Number of bananas $=3 \times 12 \times 12=432$
Number sold $=432 \times \frac{80}{100}=345,6$
Sales of bananas $=345,6 \times 65 \mathrm{c}=\mathrm{R} 224,64$
Cost of bananas $=3 \times$ R75 $=$ R225
Loss $=$ R225 - R224,64 $=36$ c]

Profit can be calculated in different ways. Normally when we talk about 10% profit we calculate it on the cost price. We sometimes also refer to a 10% mark-up. The formula for the percentage profit is:
Profit ($=$ Selling Price - Cost Price) $\times 100$
Cost Price
For example, if I sold a football which cost me R200 for R220 I make a 10% profit. R20 ($=$ R220 - R200) $\times 100=10 \%$

R200

Are you making a profit or a loss? How much? Profit can be calculated in different ways. Normally, when we talk about 10% profit (or "mark-up"), we calculated it on the cost price. To get the selling price we use this formula: Selling price $=$ Cost price + (Cost price \times profit $\%$) E.g. R200 $+(\mathrm{R} 200 \times 10 \%)=$ R200 + R20 $=$ R220 To get the percentage profit we use this formula: Percentage profit $=($ Selling Price - Cost Price $) \times 100$ Cost price
E.g. $\frac{(R 220-R 200)}{200} \times \frac{100}{1}=10 \%$

Answers:
a. Selling price $=$ Cost price $+($ Cost price \times profit $\%)$
$=45 c+(45 c \times 25 \%)$
$=45 c+\left(45 c \times \frac{80}{100}\right)$
$=45 \mathrm{c}+11,25 \mathrm{c} 100$
$=56,25$ c
$=56 \mathrm{c}$ [rounded off]
b. Selling price $=127 \mathrm{c}+\left(127 \mathrm{c} \times \frac{17}{100}\right)$
$=127 \mathrm{c}+21,59 \mathrm{c}$
$=148,59 \mathrm{c}$
= R1,49 [rounded off]

c. Cost per juice $=\mathrm{R} 1,50+\frac{\mathrm{R} 50}{200}=\mathrm{R} 1,75$

Selling price $=R 1,75+\left(\mathrm{R} 1.75 \times \frac{35}{100}\right)$
$=\mathrm{R} 2,3625$

$$
=\mathrm{R} 2,3625
$$

$=\mathrm{R} 2,36$ [rounded off]
Will I still make a profit if I sell it with discount? Answers:
a. Cost per sweet $=\mathrm{R} 12,45 \div 100=\mathrm{R} 0,1245=12,45 \mathrm{c}$

Sale price for loose sweets $=20 \mathrm{c}$
Discount price for 10 or more sweets $=20 \mathrm{c} \times \frac{75}{100}=15 \mathrm{c}$
Sweets sold $=(35 \times 20 c)+(25 \times 15 c)=700 c+375 c=1075 c$ Cost of sweets sold $=60 \times 12,45 \mathrm{c}=747 \mathrm{c}$
Profit amount $=1075 \mathrm{c}-747 \mathrm{c}=328 \mathrm{c}$
$=$ R3,28
b. Number bananas $=3 \times 12 \times 12=432$

Number sold at $65 \mathrm{c}=432 \times \frac{80}{100}=345,6=346 \begin{aligned} & \text { [only whole } \\ & \text { bananas are }\end{aligned}$ [only whole
bananas are sold]

Sale amount of 65 c bananas $=346 \times 65 \mathrm{c}=\mathrm{R} 224,90$
Number sold at 80% discount $=432-346=86$
Sale amount of discounted bananas $=86 \times\left(65 \mathrm{c} \times \frac{20}{100}\right)=$ R11,18
[80% discount means they are sold at 20% of original price]
Total sales amount $=$ R224,90 + R11,18 $=236,08$

11 Finances - budget

Objectives

- Solve problems that involve whole numbers, percentages and decimal fractions in financial contexts such as budgets

Dictionary

Budget: Budget is the estimate of cost and revenues over a specified period.

Introduction

Ask the learners the following questions:

- Do you know what a budget is?
- Can I have my own budget or is it only for adults?

Tell the learners that:

- Budget is like a scale where you try to balance your income and your expenses.

Important: Your income should always outweigh your expenses

Do you know what a budget is?
Can I have my own budget or is it only for adults?

Budget is the estimate of cost and revenues over a specified period.

Budget is like a scale where you try to balance your
income and your expenses. Important: Your income should always outweigh your expenses.

Determine your income
Creating a budget is the most important step in controlling your money. The first rule of budgeting: spend less than you earn.
Example: If you received R50 allowance (pocket money) per month and another R30 for your birthday, you cannot spend more than R80 for the entire month.

Answers:

Income	Estimated amount
Pocket money	R100
Birthday money	R50
Wash car	R20
Sell CD to a friend	R45
Estimated total income	R215

11 Finances - budget

Topic: Financial maths Content links: 9-10, 12-13 Grade 8 links: R10, 6-10 Grade 9 links: R10, 6-9

Estimate expenses. Example:			
\qquadExpenses Estimated amount Airtime R50 Tuck shop R25 New t-shirt R100 Gift for mother R25 Estimated total expenses R200 Am I making a surplus? Estimated amount R215 Total income R195 Total expenses R20 Net income			

12 Finances - loans and interest

Objectives

Solve problems that involve whole numbers, percentages and decimal fractions in financial contexts such as loans and simple interest

Dictionary

Loan: A loan is sum of money that an individual or a company lends to an individual or company with the objective of gaining profits when the money is paid back

Interest: Interest is the fee charged by a lender to a borrower for the use of borrowed money, usually expressed as an annual percentage of the amount borrowed, also called interest rate.

Ask the learners if the know what a loan and what interest is
24 Tell leaners that it is never a good idea to borrow money Rather save until you can afford to buy something.

What is a loan? What is interest?

```
A loan is a sum of money that an individual or a
``` the objective of gaining profits from interest when the money is paid back.


Calculating interest amount
When someone lends money to someone else, the borrower usually pays a fee to the lender. This fee is called 'interest'. There are two kinds of interest: 'simple' and 'compound'. 'Simple' or 'flat rate' interest is usually paid each year as a fixed percentage of the amount borrowed or lent at the start. With 'compound' interes you also pay interest on the interest!
The simple interest formula is as follows:
Interes \(\dagger=\) Principal \(\times\) Rate \(\times\) Time
where
'Interest' is the total amount of interest paid,
'Principal' is the amount lent or borrowed,
Rate' is the percentage of the principal charged as interest each year. 'Time' is the time in years to pay back the loan.

Answers:
a. R1 \(500 \times 10 \%=\) R150
b. R1 \(500 \times 110 \%=\) R1 650
c. R1 \(650 \times 52=\) R31,73 per week
d. R1 \(500 \times 112 \%=\) R1 680

R1 \(680-\) R1 \(650=\) R30 more
Calculating interest rate. Answers:
a. \((\mathrm{R} 3900-\mathrm{R} 3000)=\mathrm{R} 450\) per year
b. \(\frac{\mathrm{R} 450}{\mathrm{R} 3000} \times \frac{100}{1}=15 \%\)
c. 52 weeks/year \(\therefore 104\) in 2 years R3 \(900 \div 104=\) R37,50 per week
d. \(\frac{(R 3360-R 3000)}{R 3000} \times \frac{100}{1}=12 \%\)

\section*{Calculating repayment period}

Answers:
a. Interest \(=\) Principal \(\times\) Rate \(\times\) Time \(=\) Interest

Principal \(\times\) Rate-Principal \(\times\) Rate \(\quad\) Interest for one year
b. Total interest: R6 750 - R5 \(000=\) R1 750

Interest for one year: R5 \(000 \times 10 \%=\) R500
Period: R1 \(750 \div\) R500 \(=3,5\) years
c. Total interest: R8 \(360-\) R5 \(000=\) R3 360 Interest for one year: R5 \(000 \times 12 \%=\) R600 Period: R3 \(360 \div\) R600 \(=5,6\) years
d. Total interest: R14 \(700-\) R7 \(500=\) R7 200 Interest for one year: R7 \(500 \times 12 \%=\) R900
Period: R7 \(200 \div\) R900 \(=8\) years

\section*{Objectives}

Solve problems that involve whole numbers, percentages and decimal fractions in financial contexts such as:
- loans
- simple interest
- accounts
- profit, loss and discount
- budgets

\section*{Dictionary}

Profit: Profit is the surplus remaining after total costs are deducted from total revenue.
Loss: Loss is the excess of expenditure over income.
Discount: Discount is the amount deducted from the asking price before payment.
Budget: Budget is the estimate of cost and revenues over a specified period
Loan: A loan is sum of money that an individual or a company lends to an individual or company with the objective of gaining profits when the money is paid back.
Interest: Interest is the fee charged by a lender to a borrower for the use of borrowed money, usually expressed as an annual percentage of the amount borrowed, also called interest rate.

It is going very well with your lemonade stall and you are still making a \(100 \%\) profit on the cost of 30 cups a week sold at R2,50 a cup and your brother continues to help you. You decid to buy a lemonade maker. The lemonade maker will cost you R1 750 and you asked your family to lend you the money. They agree to lend you the money at \(15 \%\) simple interest per year. You have to repay them in one year. With the lemonade maker you will be able to sell 150 cups per month. Will you still be profitable? What percentage profit or loss will you make?

Cost of lemonade maker plus interest
\(=\) R1 \(750+(\mathrm{R} 1750 \times 15 \%)=\) R2 012,50
Cost of 30 cups of lemonade \(=\) R37,50
Sale of 30 cups at R2,50 a cup \(=\) R75,00
Cost per 150 cups \(=\mathrm{R} 37,50 \times 5=\mathrm{R} 187,50\)
Cost of lemonade per year \(=\) R187,50 \(\times 12=\) R2 250
Sales of 150 cups \(=\) R75,00 \(\times 5=\) R375,00
Sales per year (12 months \()=\) R375, \(00 \times 12=\) R4 500
Profit \(=\) R4 \(500-(\) R2 \(012+\) R2 250 \()=\) R238
Percentage profit on cost \(=\frac{\text { Profit }}{\text { Cost }} \times \frac{100}{1}=\frac{\text { R238 }}{\text { R4 } 262} \times \frac{100}{1}=5,58 \%\)
b. Profit
d. Profit \(=\) Principal \(+(\) Principal \(\times\) Rate \(\times\) Time \()\) \(=\) R37,50 \(+(\mathrm{R} 37,50 \times 100\)
New selling price \(=\) R2,50 +
e. Cost will decrease by 15 c commission per cup \(=15 \mathrm{c} \times 30=\mathrm{R} 4,50\) Total cost is now R37,50 - R4,50 = R33,00
Profit will therefore increase by 15 c per cup \(=15 \mathrm{c} \times 30=\mathrm{R} 4,50\) Total profit now \(=\) R37,50 + R4,50 \(=\) R42,00
New \% profit \(=\frac{\mathrm{R} 42}{\mathrm{R} 33} \times \frac{100}{1}=127,27 \%\) [rounded off]

Problem solving
You are buying dried fruit in big bags and repacking them into smaller bags. A big bag of mixed dried
fruit cost you R476 and you can repack it into 50 small bags. The trio to the market cost you R50 and the truall bags 50 c each. For how much must you sell the small bags of dried fruit to make a \(33 \%\) profit?
to

\section*{Answer:}

Total costs \(=\mathrm{R} 476+\mathrm{R} 50+(50 \times 50 \mathrm{c})=\mathrm{R} 551\)
Cost per bag \(=\) R551 \(\div 50=\) R11,02
Price including 33,33\% profit \(=\) R11,02 \(\times 1,3333 \%\)
\(=\) R14,69 [rounded off]

\section*{14 Square and cube numbers}

\section*{Objectives}
- Perform calculations involving square and cube numbers.
- Compare and order square and cube roots
- Determine squares to at least \(12^{2}\) and their square roots.
- Determining cubes to at least \(6^{3}\) and their cube roots.

\section*{Dictionary}

Square number: A number mutiplied by itself. E.g. \(4^{2}=4 \times 4=16\) Emphasize that: \(12^{2}=12 \times 12\) and not \(12 \times 2\)
Cube number: A number multiplied by itself and then that result multiplied by the original number again. E.g. \(4^{3}=4 \times 4 \times 4=64\), so 64 is a cubed number. Emphasize that: \(1^{3}\) means \(1 \times 1 \times 1\) and not \(1 \times 3\).

\section*{Introduction}

28
Ask the learners to look at these patterns and answer questions. Look at the following pattern:

The numbers above are called square and cube numbers

Write the following as square numbers:

Write the following as multiplication sentences:

Example: \(15^{2}=15 \times 15\)
Answers:
a. \(5^{2}=5 \times 5\)
b. \(9^{2}=9 \times 9\)
c. \(4^{2}=4 \times 4\)
d. \(2^{2}=2 \times 2\)
e. \(7^{2}=7 \times 7\)
f. \(12^{2}=12 \times 12\)

For 3², identify: a. the base number. b. the exponent.
Answers:
a. 3 is the base number and 2 is the exponent.

Remind learners that a number to the power of 1 stays the same
e.g. \(4^{1}=4\).

\section*{14 Square and cube numbers continued}

Colour all the square numbers on the multiplication board. Answers:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(\times\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & 9 & 10 \\
\hline \(\mathbf{1}\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \(\mathbf{2}\) & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
\hline \(\mathbf{3}\) & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 \\
\hline \(\mathbf{4}\) & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\
\hline \(\mathbf{5}\) & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
\hline \(\mathbf{6}\) & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 \\
\hline 7 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 \\
\hline 8 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 \\
\hline 9 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 \\
\hline \(\mathbf{1 0}\) & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline
\end{tabular}

Arrange these numbers in ascending order:
Answers: \(1^{2}, 2,2^{2}, 5,3^{2}, 10,4^{2}, 5^{2}, 6^{2}, 7^{2}, 8^{2}, 9^{2}, 10^{2}, 11^{2}, 12^{2}\)
Arrange the above numbers in descending order: Answers: \(12^{2}, 11^{2}, 10^{2}, 9^{2}, 8^{2}, 7^{2}, 6^{2}, 5^{2}, 4^{2}, 10,3^{2}, 5,2^{2}, 2,1^{2}\)

Fill in \(<,>\) or \(=\)
Answers:
a. \(2^{2}=2 \times 2\)
b. \(5^{2}>5 \times 2\)
c. \(9^{2}=9 \times 9\)
d. \(8^{2}>2 \times 8\)
e. \(11^{2}>10 \times 11\)
f. \(3 \times 3=3^{2}\)

Numbers which have an exponent of 2 are called square numbers.

Write the following as cube numbers:
Example: \(6 \times 6 \times 6=6^{3}\)
Answers:
a. \(3 \times 3 \times 3=3^{3}\)
b. \(2 \times 2 \times 2=2^{3}\)
c. \(5 \times 5 \times 5=5^{3}\)

Write the following as multiplication sums.
Answers:
a. \(2^{3}=2 \times 2 \times 2\)
b. \(4^{3}=4 \times 4 \times 4\)
c. \(1^{3}=1 \times 1 \times 1\)

Explain in your own words what a cube number is. Answer: A number multiplied by itself and then that result multiplied by the original number again.
d3
Identify: \(4^{3}\) a. the base number
b. the exponent

Answer:
a. Base number is 4 , exponent is 3

\section*{14 Square and cube numbers continued}

State the number of cubes in each of the diagrams below using exponents. Then arrange these numbers written in exponential form in ascending order.

Answers:
\(\mathrm{C}=1^{3}, \mathrm{~B}=2^{3}, \mathrm{D}=3^{3}, \mathrm{~A}=4^{3}\)
Q5
Put these numbers in ascending order:
Answers:
\(1^{3}, 2^{3}, 3^{3}, 4^{3}, 5^{3}\)
d6
Fill in \(<,>\) or \(=\)
Answers:
a. \(2^{3}>2 \times 2\)
b. \(125=5^{3}\)
c. \(1 \times 1=1^{2}\)
d. \(27=3^{3}\)
e. \(6<3^{3}\)
f. \(\quad 5^{3}>8\)

First estimate and then calculate the answers:
Example: \(5^{2}+3^{2}=25+9=34\)
Answers:
a. \(4+100=104\)
b. \(36-9=27\)
c. \(64+100=164\)

First estimate and then calculate the answers:
Example: \(5^{2}+3^{2}=25+27=52\)
Answers:
a. \(216-25=191\)
b. \(4+27=31\)
c. \(729-16=713\)

First estimate and then calculate the answers: Answers:
a. \(4+27-1=30\)
b. \(125-64+27=88\)
c. \(16+64+4=84\)

\section*{15 Square and cube roots}

\section*{Objectives}
- Perform calculations using square and cube numbers
- Compare and order square and cube roots
- Determine squares to at least \(12^{2}\) and there square roots.
- Determining cubes to at least \(6^{3}\) and cube roots.

\section*{Dictionary}

Square roots: One of the two identical factors of a number that is the product of those factors. The symbol is \(V\)
e.g. \(\sqrt{ } 4=2\) because \(2^{2}=4\)

A square root is the converse operation of squaring.
Cube roots: One of the three identical factors of a number that is the product of those factors.
The symbol is \(\sqrt{ }\)
E.g. \(=\sqrt[3]{27}=3\) because \(3^{3}=27\)

A cube root is the converse operation of cubing.

\section*{Introduction}

32
Ask learners to look at these diagrams and explain them

What do you think these diagrams represent?

\(3 \times 3 \times 3=27\)
\(\sqrt[3]{27}\)
so the cube root of 27 is 3 .

What square number and root does the diagram represent? Use the example to guide you.

Example: a. \(3 \times 3=9\), so the square number is 9 and the square root \((\sqrt{ }\) tof 9 is 3

Answers:
b. 16

4
\(4 \times 4=16\) so the square root of \(16(\sqrt{ })\) is 4 .
c. 25

5
\(5 \times 5=25\) so the square root of \(25(\sqrt{ })\) is 5 .
Write the following using the symbol for square root:
Answers: a. \(\sqrt{9}=3\)
b. \(\sqrt{25}=5\)

\section*{15 Square and cube roots continued}

Calculate the square root:
Answers:
a. \(\sqrt{81}=\sqrt{9 \times 9}=9\)
c. \(\sqrt{ } 121=\sqrt{11 \times 11}=11\)
b. \(\sqrt{1}=\sqrt{1 \times 1}=1\)
d. \(\sqrt{64}=\sqrt{8 \times 8}=8\)
f. \(\sqrt{169}=\sqrt{13 \times 13}=13\)

Write the following in ascending order.
Answer: \(\sqrt{4}, \sqrt{9}, \sqrt{16}, \sqrt{25}, \sqrt{36}\)
Write the following in ascending order.
Answer: \(\sqrt{2.2}, \sqrt{3.3}, \sqrt{4.4}\)
Write the following in descending order.
Answers:
a. \(\sqrt{9^{2}}, \sqrt{100}, \sqrt{25}, \sqrt{16}, \sqrt{2^{2}}\)

Write the following using the symbol for cube root:
Answers:
a. \(\sqrt[3]{27}\)
b. \(\sqrt[3]{8}\)

Calculate the cube root
Example: \(\sqrt{27}\)
 \(=3\)

Answers:
a. 2
b. 4
c. 1

Write the following in ascending order:
Answers:
\(\sqrt[3]{1} ; \sqrt[3]{8} ; \sqrt[3]{27} ; \sqrt[3]{125}\)
Fill in \(\langle\),\(\rangle ,or =\)
Answers:
a. \(\sqrt{36}>\sqrt{25}\)
b. \(\sqrt{81}>\sqrt{27}\)
c. \(\sqrt{9}<\sqrt{16}\)
d. \(\sqrt{81}=3^{2}\)
e. \(3^{2}>\sqrt{36}\)
f. \(4^{2}>\sqrt{25}\)

What is a cube root of the cubes below?

Answers:
a. so the cube root of 1 is 1 b. so the cube root of 8 is 2 c. so the cube root of 27 is 3 d. so the cube root of 64 is 4

Write the following in descending order:
Answers:
\(\sqrt{4 \cdot 4 \cdot 4} ; \sqrt{333} ; \sqrt{2 \cdot 2 \cdot 2}\)
Write the following in ascending order:
Answers:
\(1^{3} ; \sqrt[3]{27} ; 2^{3} ; 4^{3}\)

\section*{15 Square and cube roots continued}

\section*{Objectives}
- Solve problems involving numbers in exponential form.
- Recognise exponential notation

\section*{Dictionary}

Exponential notation: Exponential notation is a way to write (and read) mathematical content in a short and clear way. E.g. \(4 \times 4 \times 4\) is written \(4^{3}\) in exponential form. \(4^{3}\) is read " 4 to the power of 3 " where 4 is called the base of the power and 3 is called the exponent or index.

\section*{Introduction}

\section*{Tell the learners that in science we deal with numbers that are} sometimes extremely large or small.
In science, we deal with numbers that are sometimes extremely large or extremely small.

\section*{How fast can you calculate the following?}
\[
\text { Example: } 10 \times 10 \times 10 \times 10=10000
\]
Answers:b. 100000c. 10000
a. 100e. 10000000
f. 1000000

\section*{16 Exponential notation continued}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{} & Write the following in exponential form. \\
\hline & Example: \(10 \times 10 \times 10 \times 10=10^{4}\) \\
\hline & \begin{tabular}{l}
Answers: \\
a. \(10^{9}\) \\
b. \(10^{5}\) \\
c. \(10^{6}\)
\end{tabular} \\
\hline & Expand the following statements: \\
\hline & Example: \(10^{3}=10 \times 10 \times 10\) \\
\hline & \begin{tabular}{l}
Answers: \\
a. \(10 \times 10\) \\
b. \(10 \times 10 \times 10 \times 10\) \\
c. \(10 \times 10 \times 10 \times 10 \times 10\) \\
d. \(10 \times 10 \times 10 \times 10 \times 10 \times 10\) \\
e. \(10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10\) \\
f. \(10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10\)
\end{tabular} \\
\hline & \begin{tabular}{l}
Your cousin wrote this in his maths book \(10^{5}\). What does this mean? \\
Answer: \\
a. Ten to the power of five \((10)^{5}\)
\end{tabular} \\
\hline
\end{tabular}

Give some practical examples of where exponential notation is used.
Answers: Examples are:
a. Scientists use this to calculate large numbers
b. Engineering

Problem solving
pand the following statements:

Answers:
a. \(10 \times 10\)
c. \(10 \times 10 \times 10 \times 10 \times 10\)
d. \(10 \times 10 \times 10 \times 10 \times 10 \times 10\)

Did learners meet the objectives?

\section*{Common errors}

Make notes of common errors made by the learners.

\section*{17 Estimate and calculate exponents}

Topic: Exponents and roots Content links: 14-16, 18-19 Grade 8 links: R3, 14-18 Grade 9 links: R3, 12, 19-26

\section*{Objectives}
- Recognize and use the appropriate laws of operations with numbers involving exponents and square and cube roots
- Perform calculations involving all four operations using numbers in exponential form, limited to exponents up to 5 , and square and cube roots

\section*{Dictionary}

Exponent: The exponent of a number shows you how many times to use the number in a multiplication.
E.g. \(3^{2}=3 \times 3=9\).
\(3^{2}\) could be read as:
- 3 to the second power, or
- 3 to the power of two, or
- 3 squared

Exponents are also called powers or indices (Singular: index)
BODMAS: The order in which we carry out a calculation is important. BODMAS stands for such an order:
B brackets
O other (power and square roots)
D division and
M multiplication (left-to-right)
A addition and
S subtraction (left-to-right)

Introduction
38
Make this a fun activity for learners to see who can first identify the which number(s) will give you an answer of \(10^{4}\).
Which multipication sums will give you an answer of \(10^{4}\) ?
\begin{tabular}{|l|l|l|l|l|}
\hline \(10 \times 1000\) & \(1 \times 10 \times 1000\) & \(10 \times 100\) & \(10 \times 100 \times 10\) & \(100 \times 1000\) \\
\hline \(1 \times 1000\) & \(100 \times 10 \times 1\) & \(10 \times 10 \times 10 \times 10\) & \(1 \times 1 \times 1 \times 1\) & \(1000 \times 10\) \\
\hline \(1 \times 1000 \times 10\) & \(10 \times 10 \times 100\) & \(100 \times 10 \times 1 \times 1\) & \(1 \times 10000\) & \(100 \times 10+10\) \\
\hline \(1000 \times 1\) & \(100 \times 10 \times 10 \times 1\) & \(1000 \times 1000\) & \(100 \times 10\) & \(10+10+10+10\) \\
\hline \(100 \times 10 \times 10\) & \(10 \times 10\) & \(10 \times 1 \times 1000\) & \(10 \times 10 \times 10\) & \(100 \times 100\) \\
\hline
\end{tabular}

Write in expanded form.
Example: \(10 \times 10 \times 10 \times 10=10^{4}\) Answers:
a. \(10^{5}\)
b. 10
c. \(10^{7}\)
d. 10
e. \(10^{8}\)

Write in expanded form. Example: \(10^{4}=10 \times 10 \times 10 \times 10\) Answers:
a. \(10 \times 10 \times 10\)
b. \(10 \times 10 \times 10\)
c. \(10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10\)
d. \(10 \times 10 \times 10 \times 10 \times 10\)
e. \(10 \times 10 \times 10 \times 10\)
f. \(10 \times 10 \times 10 \times 10 \times 10 \times 10\)

Calculate.
Answers:
a. \(1000+100=1100\)
b. \(10000+1000000=1010000\)
c. \(100000+1000=101000\)

Example: \(10^{4}+10^{3}\)
Remember the BODMAS order. In this example, first calculate the exponent, then do the addition.
\(=10000+1000\)
\(=11000\)

\section*{17 Estimate and calculate exponents cont...}

Calculate:
Example: \(2 \times 10^{4}+3 \times 10^{3}+4 \times 10^{5}\)
\(=2 \times 10000+3 \times 1000+4 \times 100000\)
\(=(2 \times 10000)+(3 \times 1000)+(4 \times 100000)\)
\(=20000+3000+400000\)
\(=423000\)
Answers:
a. \((1 \times 100)+(8 \times 100000)+(3 \times 1000000)\) \(100+800000+3000000\)
3800100
b. \((3 \times 1000)+(8 \times 1000)+(7 \times 10000000)\)
\(3000+8000+70000000\)
70011000
c. \((5 \times 1000)+(6 \times 100)+(2 \times 10000)\)
\(5000+600+20000\) 25600
d. Learner's own answer

Answer: \(10^{3}+10^{2}+\left(3 \times 10^{1}\right)\)
\(1000+100+(3 \times 10)=1130\)
Remind the learners that any number to the power of 1 is that same number.

\section*{18 Estimate and calculate more exponents}

\section*{Objectives}
- Solve problems involving numbers in exponential form

\section*{Dictionary}

Square number: a number multiplied by itself, e.g. \(4^{2}=4 \times 4=16\) Emphasize that: \(12^{2}=12 \times 12\) and not \(12 \times 2\)

Cube number: a number multiplied by itself and then that result multiplied by the original number again, e.g. \(4^{3}=4 \times 4 \times 4=64\), so 64 is a cubed number. Emphasize that: \(1^{3}\) means \(1 \times 1 \times 1\) and not \(1 \times 3\)

Power of ten: any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times

\section*{Introduction}

Ask the learners to match the words with the pictures:
- Square numbers - A picture of a tiled floor.
- Cube numbers - A picture of a wooden box

Ask the learner what it means if we have a number to the power of 0. It always equals one. Ask the learners what it means if we have a number to the power of 1 . It always equals the number itself.

Calculate.
Example: \(2^{2}+2^{3}=4+8=12\)

\section*{Remember BODMAS}

Answers:
a. \(4+144=148\)
b. \(16+100=116\)
c. \(8+121=129\)
d. \(216+1=217\)
e. \(9+8=17\)
f. \(25+8=33\)

Calculate.
Example: \(2^{2}+3^{3}+4^{2}=4+27+16=47\)

\section*{Answers:}
a. \(4+64+9=77\)
b. \(125+36+81=242\)
c. \(49+8+8=66\)
d. \(25+100+144=269\)
e. \(121+16+27=164\)
f. \(125+81-36=170\)

How fast can you calculate the following?
Answers:
a. 9
b. 27
c. 25
d. 121
e. 16
f. 4
h. 16
g. 125
g. 125
i. 36

\section*{18 Estimate and calculate more exponents cont...}

> Calculate.
> Example:
> Answers:
> a. \((8-4)^{3}\)
> \(=(4)^{3}\)
> \(=64\)
> b. \((7+1)^{2}\)
> \(=(8)^{2}\)
> \(=64\)
> c. \((9+2)^{2}\)
> \(=(11)^{2}\)
> \(=121\)
> d. \((18-9)^{2}\)
> \(=(9)^{2}\)
> e. \(\begin{aligned} &(11-6)^{3} \\ &=(5)^{3} \\ &=125\end{aligned}\)
> f. \(\begin{aligned} & (16-11)^{3} \\ = & (5)^{3} \\ = & 125\end{aligned}\)

Create your own number sentences and calculate the answers Answers: These are examples
a. \(2^{3}+3^{3}+4^{3}\)
\(=8+27+64\)
\(=99\)
b. \(2^{2}+4^{2}+6^{2}\)
\(=4+16+36\)
\(=56\)
c. \(3^{3}+4^{3}+2^{2}\)
\(=27+64+4\)
\(=95\)
d. \(4^{3}-2^{2}\)
\(=64-4\)
\(=60\)
e. \(\left(2^{2}+3^{2}\right)+\left(4^{3}+3^{3}\right)\) \(=(4+9)+(64+27)\)
\(=13+91\)
\(=104\)
f. \(3^{2}+2^{3}+5^{3}+4^{3}\) \(=9+8+125+64\) \(=206\)
g. \(2^{3}+4^{3}-3^{3}\)
\(=8+64-27\)
\(=72-27\)
\(=45\)
h. \(\left(3^{2}+7^{2}\right)-\left(5^{2} \times 1^{2}\right) \quad\) i. \(6^{3}+12^{2}\) \(=(9+49)-(25 \times 1)=216+144\) \(=58-25\)
\(=360\) \(=33\)

Problem solving
41

> What is four to the power of three minus one to the power of one plus one hundred to the power of one. Check your answer using a calculator.

Answer:
\(4^{3}-1^{1}+100\)
\(=64-1+100\)
\(=163\)

Reflection questions
Did learners meet the objectives?

Common errors
Make notes of common errors made by the learners

\section*{19 Numbers in exponential form}

Topic: Exponents and roots Content links: 14-18 Grade 8 links: R3, 14-18 Grade 9 links: R3, 12, 19-26

\section*{Objectives}
- Compare and represent whole numbers in exponential form:

Extend the pattern another three times (up to the power of
5). Use your calculator, where necessary, to calculate the answers. Answers:
a. \(20 \times 20 \times 20=20^{3}\)
\(20 \times 20 \times 20 \times 20=20^{4}\)
b. \(10 \times 10 \times 10=10^{3}\)
\(10 \times 10 \times 10 \times 10=10^{4}\)
\(20 \times 20 \times 20 \times 20 \times 20=20^{5}\)
\(10 \times 10 \times 10 \times 10 \times 10=10\)
c. \(17 \times 17 \times 17=17^{3}\)
\(17 \times 17 \times 17 \times 17=17^{4}\)
\(17 \times 17 \times 17 \times 17 \times 17=17^{5}\)
d. \(38 \times 38 \times 38=38^{3}\)
\(38 \times 38 \times 38 \times 38=38^{4}\)
\(38 \times 38 \times 38 \times 38 \times 38=38^{5}\)
e. \(59 \times 59 \times 59=59^{3}\)
f. \(15 \times 15 \times 15=15^{3}\)
\(59 \times 59 \times 59 \times 59=59^{4}\)
\(59 \times 59 \times 59 \times 59 \times 59=59^{5}\)
\(15 \times 15 \times 15 \times 15=15\) \(15 \times 15 \times 15 \times 15 \times 15=15^{5}\)

Expand the exponential notation and use your calculator to calculate the answer.

Example: \(18^{4}\)

Answers:
a. \(22^{3}\)
\(=22 \times 22 \times 22\)
\(=10648\)
c. \(74^{4}\)
\(=74 \times 74 \times 74 \times 74\)
\(=29986576\)
b. \(81^{2}\) \(=81 \times 81\) \(=6561\)
d. \(39^{1}\) \(=39 \times 1\) \(=39\)

19 Numbers in exponential form cont...
\(=97 \times 97 \times 97 \times 97 \times 97 \times 97 \times 97\) \(=80798284478113\)
f. \(32^{8}\)
\(=32 \times 32 \times 32 \times 32 \times 32 \times 32 \times 32 \times 32\)
\(=1099511627776\)
Extend the pattern one more time.

\section*{Answers:}
a. \(a \times a \times a=a^{3}\) \(a \times a \times a \times a=a^{4}\)
d. \(r \times r \times r=r^{3}\) \(r \times r \times r \times r=r^{4}\)
b. \(b \times b \times b=b^{3}\) \(b \times b \times b \times b=b^{4}\)
e. \(k \times k \times k=k^{3}\) \(k \times k \times k \times k=k^{4}\)
c. \(m \times m \times m=m^{3}\) \(m \times m \times m \times m=m^{4}\)
f. \(n \times n \times n=n^{3}\) \(n \times n \times n \times n=n^{4}\)

\section*{Expand.}
Example: \(m^{4}\)
\[
=m \times m \times m \times m
\]
\begin{tabular}{ll}
Answers: & \\
\begin{tabular}{ll}
a. \(a^{3}=a \times a \times a\) & b. \(b^{2}=b \times b\) \\
c. \(r^{4}=r \times r \times r \times r\) & d. \(m^{1}=m \times 1\) \\
e. \(p^{7}=p \times p \times p \times p \times p \times p \times p\) & f. \(p^{8}=p \times p \times p \times p \times p \times p \times p \times p\)
\end{tabular}
\end{tabular}

Calculate question 3 and 4 if: \(a=10, b=3, m=100, r=5, k=1\),

\section*{20 Constructing geometric objects}

\section*{Objectives}
- Accurately use a protractor to measure and classify acute, right, obtuse and straight angles
- Use a protractor to measure and draw angles

\section*{Dictionary}

Angle: An angle is made when the two straight lines meet or cross each other at a fixed point. The size of the angle is measured by the amount one line has turned in relation to the other.
Acute angle: an angle between \(0^{\circ}\) and \(90^{\circ}\)
Obtuse angle: an angle between \(90^{\circ}\) and \(180^{\circ}\)
Reflex angle: an angle between \(180^{\circ}\) and \(360^{\circ}\)
Right-angle triangle: a right angled triangle is a triangle which has a right angle \(\left(90^{\circ}\right)\) in it.
Straight angle: It is a straight line. It measures \(180^{\circ}\).
Construct: To construct is to draw a shape, line or angle accurately using a compass, straight edge or protractor.

Note: Some construction exercises may forbid the use of a protractor or straight edge to make measurements.

\section*{Introduction}

What do we use a protractor for?
A protractor is used
measuring an angle
An angle is measure
degrees
- A circle has \(360^{\circ}\)

Ask the learners to look at the introduction and answer the following questions:
- What is a protractor? (Show them an example or ask them to take out their protractors.)
- What do we use a protractor for?
- This is a \(180^{\circ}\) protractor. Do we get any other types of protractors?
- How can you use your \(180^{\circ}\) protractor to draw a \(360^{\circ}\) circle?

How will you measure angles using a protractor. Fill in the missing words. These can help you (you can use a word more than once): angle, sides, curved, centre, zero Answers: on the next page

\section*{20 Constructing geometric objects continued}

\section*{21 Angles and sides}

Topic: Angles Content links: 22-23
Grade 8 links: 45-46, 49 Grade 9 links: 39-40, 47, 53-56

\section*{Objectives}
- Accurately use a protractor to measure and classify acute, right and obtuse and straight angles
- Use a protractor to measure and draw angles

\section*{Dictionary}

Angle: An angle is a figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Interior angle: An interior angle is an angle inside a shape

What is an angle?
Answer: An angle is the measurement in degrees between two lines which start at the point OR An angle is made when the two straight lines meet or cross each other at a fixed point and the size of the angle is measured in degrees by the amount one line has turned in relation to the other.

Exterior angle: The exterior angle is the angle between any side of a shape, and a line extended from the next side.

\section*{Introduction} \(90^{\circ}\) angles, the angles similar than \(90^{\circ}\) and the angles bigger than \(90^{\circ}\). Ask learners the following questions:
- Which type of angle do we get more often in a room?
- Which type of angle do we get less often in a room?

Match column B with column A. Answer:
\begin{tabular}{|l|l|}
\hline A: Name of angle & B: Degrees \\
\hline Acute angle & \(90^{\circ}\) \\
\hline Right angle & \(360^{\circ}\) \\
\hline Obtuse angle & Less than \(90^{\circ}\) \\
\hline Straight angle & Between \(180^{\circ}\) and \(360^{\circ}\) \\
\hline Reflex angle & Between \(90^{\circ}\) and \(180^{\circ}\) \\
\hline Revolution & \(180^{\circ}\) \\
\hline
\end{tabular}

What is a protractor? Answer: A flat half-circle shaped tool, made of transparent plastic, used for measuring angles in degrees \(\left({ }^{\circ}\right)\).

Label the protractor.

\section*{21 Angles and sides continued}

Measure and name each angle.
Answers:
a. \(30^{\circ}\) acute angle
b. \(112^{0}\) obtuse angle
c. \(251^{\circ}\) reflex angle
d. \(90^{\circ}\) right angle
e. \(180^{\circ}\) straight angle

What is a side (or ray)?
Answer: a. One length of the angle formed.

Look at the pictures of the protractors. Write down the size of the angle being measured each time and also use your ruler to measure the length of the sides of each shape.
Answers:

Angle: \(60^{0}\)
Length of sides: 28 mm

Angle: \(120^{0}\) Length of sides: 16 mm
b.

Angle: \(115^{0}\)
Length of sides: 28 mm and 48 mm
d.

Angle: \(71^{10}\)
Length of sides: \(24 \mathrm{~mm}(\times 2), 35 \mathrm{~mm}(\mathrm{x} 2)\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{11}{*}{} & \multirow[t]{11}{*}{\begin{tabular}{l}
Name the angles. \\
Answers: \\
Identify and name four angles in the picture. \\
Answers: \\
a. \(180^{\circ}\) straight line \\
b. \(90^{\circ}\) corner \\
c. \(360^{\circ}\) stove plate \\
d. \(120^{\circ}\) cupboard top
\end{tabular}} & Angle size & Name of angle \\
\hline & & \(40^{\circ}\) & Acute angle \\
\hline & & \(96^{\circ}\) & Obtuse angle \\
\hline & & \(180^{\circ}\) & Straight angle/line \\
\hline & & \(172^{\circ}\) & Obtuse angle \\
\hline & & \(200^{\circ}\) & Reflex angle \\
\hline & & \(145^{\circ}\) & Obtuse angle \\
\hline & & \(60^{\circ}\) & Acute angle \\
\hline & & \(2^{\circ}\) & Acute angle \\
\hline & & \(359^{\circ}\) & Reflex angle \\
\hline & & \(240^{\circ}\) & Reflex angle \\
\hline
\end{tabular}

\section*{49}

\section*{22 Size of angles}

Topic: Angles Content links: 21, 23
Grade 8 links: 45-46, 49 Grade 9 links: 39-40, 47, 53-56

\section*{Objectives}
- Accurately use a protractor to measure and classify acute, right and obtuse and straight angles
- Use a protractor to measure and draw angles

\section*{Dictionary}

Angle: The amount a line turns from one position to another, around a fixed point.

Introduction
50
Introduce this lesson by asking learners what is an angle. They don't have to name the angles but just to describe them. Ask learners to make three drawings of angles in everyday life.

Find angles in these pictures and measure them using your protractor. (Note: the angles in the pictures will not be all the same as they are on real objects because of perspective in the pictures).

Answers:
These are many possible answers, e.g.
a. \(360^{\circ}\) revolution in circular table top
b. \(90^{\circ}\) right angles in windows, table top
c. \(180^{\circ}\) straight angle in tables, carpet edge
d. \(145^{\circ}\) obtuse angle in seat cushions

What is an angle? Make three drawings of angles that you can see in your home.

TV on a shelf \(90^{\circ}\)

More than \(90^{\circ}\)
obtuse angle

Fill in the degrees on the protractors.

Answers must have at least:
a. \(0^{0}, 90^{\circ}\) and \(180^{\circ}\)
b. \(0^{\circ}\left(360^{\circ}\right), 90^{\circ}, 180^{\circ}\), and \(270^{\circ}\)

\section*{22 Size of angles continued}

Topic: Angles Content links: 21, 23
Grade 8 links: 45-46, 49 Grade 9 links: 39-40, 47, 53-56

\section*{23 Using a protractor}

Topic: Constructions Content links: 24-26, 97, 103-104
Grade 8 links: R11, 45-48, 50-55, 63, 132-133 Grade 9 links: R11, 39-42, 44-46, 121-122

\section*{Objectives}
- Accurately construct geometric figures appropriately using a pair of compass, ruler and protractor, including angles to one degree of accuracy

\section*{Dictionary}

Protractor: An instrument used to measure or draw angles, usually in the shape of a half circle marked out in degrees \(\left(^{\circ}\right.\)) from \(0^{\circ}\) to \(180^{\circ}\). The measuring unit for angles is degree \(\left({ }^{\circ}\right)\). To measure an angle, place the centre line in the little half circle (sometimes a little hole) of the protractor on the vertex of the angle. Line up the zero line on the protractor with one side of the angle. Then read the measurement where the other side touches the protractor scale.

\section*{Introduction}

Ask the learners to look at the pictures. Ask them what these people are using their protractors for.

Look at the pictures. What are these people using their protractors for?

The step-by-step instructions below show how to draw a \(45^{\circ}\) angle. Follow these instructions to draw the angles given in the questions. Answers:

Use a protractor to draw some angles. Do this by following the step-by-step instruction on the left.

23 Using a protractor
23 Using a protractor cont... Grade 8 links: R11, 45-48, 50-55, 63, 132-133 Grade 9 links: R11, 39-42, 44-46, 121-122

Use a ruler and a protractor to draw and label geometric figures. Write down the steps how you construct it.

\section*{Answers:}
a. Draw a straight line segment and label it A B Measure \(60^{\circ}\). and connect A to C. Mark the angle.

b. Follow above steps for \(65^{\circ}\). Turn the paper and starting from point C measure \(45^{\circ}\). Connect \(C\) to line segment AB.
c. Draw a line segment AB and measure \(100^{\circ}\) from A and \(70^{\circ}\) from B. Connect B with D and A with C . Connect C with D.

Answer: Many shapes of polygons are possible. This example is an irregular hexagon, "irregular" because all its sides are of different lengths.

Reflection questions
Did learners meet the objectives?

\section*{Common errors}

Make notes of common errors made by the learners.

\section*{Objectives}
- Accurately construct parallel and perpendicular lines appropriately using a pair of compasses
- Recognise, describe and define perpendicular lines, parallel lines and line segments

\section*{Dictionary}

Parallel lines: Two or more lines which are equidistant, in other words the distance between one line and another is consistent throughout. The perpendicular height between 2 parallel lines is identical wherever it is measured.

Perpendicular lines: Lines that intersect (meet) at right angles \(\left(90^{\circ}\right)\) to each other

Compass (construction): An instrument with two arms, one with a sharp point and one which holds a pencil that can be used to draw circles or arcs

Compass (direction): An instrument that shows us directions by means of a small magnetic needle that points toward magnetic North of the earth.

\section*{24 Parallel and perpendicular lines cont...}

\section*{25 Construct angles and a triangle}

\section*{Objectives}
- Accurately construct angles and triangles appropriately using a pair of compasses

\section*{Dictionary}

Construct: To construct is to draw a shape, line or angle accurately using a compass, straight edge, protractor or triangle.

Construction: Construction in geometry means drawing of geometric items such as lines and circles using only a pair of compasses and straight edge. You are not allowed to measure angles with a protractor, or measure lengths with a ruler.

Angle: The amount a line turns from one position to another, around a fixed point.

Triangle: A polygon with three sides and three angles. The three angles will always add up to \(180^{\circ}\). These are names of three special types of triangle: Equilateral, Isosceles and Scalene. Names tell you about the sides or the angles inside the triangle.

\section*{ \\ 25 Construct angles and a triangle cont...}

Construct an equilateral triangle. Follow the steps and construct your triangle below. Answers:

Answer: Learner's own triangle. The learner will need to have constructed an equilateral triangle (to get a \(60^{\circ}\) angle), divided a \(60^{\circ}\) angle to get a \(30^{\circ}\) angle and then constructed a perpendicular line to get a right angle which is then divided in half (to get a \(45^{\circ}\) angle).

Reflection questions
Did learners meet the objectives?

\section*{Objectives}

Accurately construct circles appropriately using a pair of compasses, ruler and protractor

Label the circle

Circle: the set of all points on a plane that are the same fixed distance from a centre point

\section*{Introduction}

62
Ask the learners what to these pictures have in common.
They are all forming circles.
hey are all forming circles.
What do all these pictures have in common?
What is a circle?
Answers: A circle is the set of all points on a plane that are the same fixed distance from a centre point

Measure the diameter of each circle. What is the radius of the circles?
a. Underneath each circle write its radius.
b. Draw any chord on each circle and measure it.

Answers: [Approximate lengths due to variations in printing] a. Radius: \(12 \mathrm{~mm} \quad\) b. Radius: \(15 \mathrm{~mm} \quad\) c. Radius: 9 mm Chords: Learner's own measurement

\section*{26 Circles continued}

\section*{Objectives}

Describe, sort name and compare triangles according to their sides and angles, focusing on:
- Equilateral triangles
- Isosceles triangles
- Right-angled triangles

\section*{Dictionary}

Triangle: A polygon with three sides and three angles. The three angles will always add to \(180^{\circ}\). These are names of three special types of triangle: Equilateral, Isosceles and Scalene. Names tell you about the sides or the angles inside the triangle.
Equilateral triangle: This is a triangle with three sides of equal length and three equal angles of \(60^{\circ}\).
Isosceles triangle: This triangle has two sides of equal length and two angles equal.
Right-angle triangle: A right angled triangle is a triangle which
has a right angle \(\left(90^{\circ}\right)\) in it.
Scalene triangle: This triangle has no sides or angles that are equal.

Term 1

\section*{27 Triangles continued}

Topic: 2-D shapes Content links: R10, 26, 28-29
Grade 8 links: 52-58 Grade 9 links: R13, 41, 43, 47-52

\section*{27 Triangles continued}

Topic: 2-D shapes Content links: R10, 26, 28-29 Grade 8 links: 52-58 Grade 9 links: R13, 41, 43, 47-52

A scalene triangle has three sides of different lengths. Draw three different scalene triangles.
Answers: Learner's drawing of three triangles each with three sides of different lengths.

Measure each of these triangles.
a. Measure the sides. Answer: See diagrams below. [Approximate lengths due to variations in printing]
b. What do you notice? Anwers: All the sides are different lengths
c. Measure the angles of the triangles.
d. What do you notice? Answer: All the angles are different. One of the angles is a right angle.
e. Label each triangle.

\section*{Objectives}
- Describe, sort, name and compare polygons
- Describe, sort, name and compare quadrilaterals in terms of size of angles (right angles or not, length of sides, and whether sides are parallel or perpendicular to each other)
- Solve simple geometric problems involving unknown sides and angles in triangles and quadrilaterals using known properties and definitions

\section*{Dictionary}

Polygon: A plane shape completely enclosed by three or more straight edges, e.g. triangles, quadrilaterals and pentagons.

\section*{Introduction}

68
Tell the learners to use Cut-out 1 to make a tangram. They will use these trangram pieces later on in this worksheet. Ask the learners why they think a tangram is called a disectional puzzle? A Tangram is a dissection puzzle consisting of seven pieces which fit together to form a shape.

Answer: Because something is 'cut-up into pieces' so that so that one can understand its structure and how it works.
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ Complete this table. Answers: } \\
\(\qquad\)\begin{tabular}{|l|c|c|c|c|c|}
\hline Polygon & & & & & \\
\hline \begin{tabular}{l}
Number of \\
sides
\end{tabular} & 5 & 6 & 7 & 8 & 9 \\
\hline Angle size & \(70^{\circ}\) & \(110^{\circ}\) & \(126^{\circ}\) & \(135^{\circ}\) & \(135^{\circ}\) \\
\hline \begin{tabular}{l}
Total sum of \\
angles
\end{tabular} & \(350^{\circ}\) & \(660^{\circ}\) & \(882^{\circ}\) & \(1080^{\circ}\) & \(1215^{\circ}\) \\
\hline
\end{tabular} & \(1450^{\circ}\) \\
\hline
\end{tabular}

What is this? Where would you find it? What polygon/s can you identify?
a.

Answers: a. Wasp nest hexagon
b.

b. Paving stone hexagon

\section*{28 Polygons continued}

Topic: 2-D shapes Content links: R10, 26, 27, 29 Grade 8 links: 58 Grade 9 links: R13, 43, 49-50

What geometric figures do you see?

Identify, name and describe the following polygons in these pictures.
a.

Answers:
Triangles; parallelograms, trapeziums, rombuses

Rectangles; squares

The tangram in Cut-out 1 is a dissection puzzle. It consists of seven pieces, called tans, which fit together to form a shape of some sort. The objective is to form a specific shape with seven pieces. The shape has to contain all the pieces, which may not overlap. Answers: These are possible answers.

Say whether each of the following is a quadrilateral or not. Provide reasons for your answer.
Answers: a., b. and f. are quadrilaterals (they have four sides each). The other shapes have more than four sides.
What fraction of the tangram is this square?

Answer: The square is one eighth of the tangram.
This could be found by reordering
the tangram shapes.

\section*{29 Congruent and similar shapes}

\section*{Objectives}

Recognize and describe similar and congruent figures by comparing:
- Size
- Shapes

Solve simple geometric problems involving unknown sides and angles in triangles and quadrilaterals using known properties and definitions.

\section*{Dictionary}

Congruent: Having the same shape and size. Congruent shape have all sides and angles equal.

Similar: Having the same shape but different in size. Similar shapes have the corresponding angles in each shape the same.

Hypotenuse: The longest side of a right-angled triangle which is opposite the right angle.

72

\section*{Introduction}

Make the following drawing on the board. Ask learners to compare them

The triangles have the same shape but differ in size.

Answers:They all have the same shape but differ in size.

\section*{29 Congruent and similar shapes cont...}

\section*{Objectives}
- Count forward and backwards in fractions
- Identify, recognise and name proper, improper and mixed fractions
- Compare and order fractions

\section*{Dictionary}

Proper Fraction: A proper fraction is a fraction in which the numerator (the top number) is smaller than the denominator (the bottom number). It is less than one. E.g.: \(\frac{3}{4}\)

Improper Fraction: An improper fraction is where the numerator (the top number) is greater than or equal to the denominator (bottom number). E.g.: \(\frac{5}{2}\)

Mixed Fraction: A mixed fraction is a whole number and proper fraction combined into one "mixed number". It is larger than one. Also called a mixed number. E.g.: \(2 \frac{1}{4}\).
A mixed fraction can be changed into an improper fraction and vice versa.

Common Fraction: A common fraction is a fraction in which the numerator and denominator are both integers, as opposed to fractions. Also called a vulgar fraction.

\section*{Introduction}

Ask the learners to look at the fraction strips. Ask them the following questions:
- What is this?
- How will you use it to determine equivalent fractions.

Use the fraction strips and answer the following:
- Give all the fractions equivalent to: \(\frac{1}{2}: \frac{1}{3}: \frac{1}{6}\)
- Give four fractions bigger and one fraction smaller than: \(\frac{2}{5}\)

Complete the following: Answers:
a. \(\frac{1}{4} ; \frac{2}{4} ; \frac{3}{4} ;\)
c. \(\frac{1}{11} ; \frac{2}{11} ; \frac{3}{11} ; \frac{4}{11} ; \frac{5}{11} ; \frac{6}{11} ; \frac{7}{11} ; \frac{8}{11} ; \frac{9}{1} ; \frac{10}{11} ; 1\) \(11^{\prime} 11^{\prime} 11^{\prime} 11^{\prime} 11^{\prime} 11^{\prime} 11^{\prime} 11^{\prime} 11^{\prime} 11\)
e. \(\frac{1}{6} ; \frac{2}{6} ; \frac{3}{6} ; \frac{4}{6} ; \frac{5}{6} ; 1\)
b. \(\frac{1}{9} ; \frac{2}{9} ; \frac{3}{9} ; \frac{4}{9} ; \frac{5}{9} ; \frac{6}{9} ; \frac{7}{9} ; \frac{8}{9} ; 1\)
d. \(\frac{1}{5} ; \frac{2}{5} ; \frac{3}{5} ; \frac{4}{5} ; 1\)
f. \(\frac{1}{8} ; \frac{2}{8} ; \frac{3}{8} ; \frac{4}{8} ; \frac{5}{8} ; \frac{6}{8} ; \frac{7}{8} ; 1\)

f. Question 2 has only
proper fractions, Question
4 has both proper and mixed fractions.

Say whether it is a proper

\section*{Oral questions}

Which faction is the smaller, \(\frac{3}{10}\) or \(\frac{3}{100}\) ?
Which faction is the larger, \(\frac{15}{10}\) or \(\frac{15}{100}\) ?
or improper fraction, or a mixed number: Answers:
a. Proper fraction b. Improper fraction
c. Mixed number
d. Improper fraction
e. Proper fraction

Write down: Answers: These are examples
\[
\text { a. } \frac{1}{2} ; \frac{1}{3} ; \frac{1}{4} ; \frac{1}{5} ; \frac{1}{6} \quad \text { b. } \frac{5}{2} ; \frac{6}{3} ; \frac{7}{4} ; \frac{8}{5} ; \frac{9}{6} \text { c. } 1 \frac{1}{2} ; 1 \frac{1}{3} ; 1 \frac{1}{4} ; 1 \frac{1}{5} ; 1 \frac{1}{6}
\]

Problem solving

Name five fractions that are between one quarter and two quarters.
Answer: These are examples

\section*{31 Equivalent fractions}

\section*{Objectives}
- Recognise and use equivalent forms of common fractions

\section*{Dictionary}

Equivalent: having the same value or amount
Equivalent fractions: fractions which have the same value, even
though they may look different, e.g. \(\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}\)

Introduction
Ask the learners what the same colour fraction markings on
76
the number lines have in common?
- \(\underline{1}\). \(\underline{2}\). \(\underline{4}\) are all equivalent

5'10'20
- \(\frac{2}{5} ; \frac{4}{10} ; \frac{8}{20}\) are all equivalent
- \(\frac{3}{5} ; \frac{6}{10} ; \frac{12}{20}\) are all equivalent

Fill in the correct fraction at each of the coloured marks on the number lines below. What do the fractions at the red colour marks have in common? What about the fractions at the blue, green and yellow marks?

\section*{31 Equivalent fractions continued}

\section*{Objectives}
- Determine the Highest Common Factor (HCF)
- Write fractions in their simplest form

\section*{Dictionary}

Highest common factor: E.g. the highest common factor of 2,3 and 4 is 12 .

Common Fraction: A common fraction is a fraction in which the numerator and denominator are both integers, as opposed to fractions. Also called a vulgar fraction.

\section*{Introduction}

Ask the learners the following questions:
- Are \(\frac{8}{16}\) and \(\frac{1}{2}\) the same?
- What happened to the numerator from the first to the second fractions? (It is simplified by being divided by 8 . It is important that learners should notice that they are equivalent fractions
- Denominator? (See previous answer)
- Why do you think we need to know how to use the HCF?
What happened to the numerator from the firs
to the second fractions?
What happened to the denominator?
Why do you think we need to know how to use
the HCF?
```

Are $\frac{8}{16}$ and $\frac{1}{2}$ the same?
Are $\frac{8}{16}$ and $\frac{1}{2}$ the same?

What is the highest common factor?

## Example:

Highest common factor (HCF)
Factors of 4: $\{1,2,4\}$
Factors of $6:\{1,2,3,6\}$
HCF = 2
So 2 is the biggest number that can divide into 4 and 6 .

Answers:
a. Factors of $3=\{1 ; 3\}$
b. Factors of $5=\{1 ; 5\}$
c. Factors of $6=\{1 ; 2 ; 3 ; 6\}$
d. Factors of $3=\{1 ; 3\}$
e. Factors of $7=\{1 ; 7\}$
f. Factors of $11=\{1 ; 11\}$

Factors of $4=\{1 ; 2 ; 4\}$	HCF $=1$
Factors of $6=\{1 ; 2 ; 3 ; 6\}$	$\mathrm{HCF}=1$
Factors of $12=\{1 ; 2 ; 3 ; 4 ; 6 ; 12\}$	$\mathrm{HCF}=6$
Factors of $9=\{1 ; 3 ; 9\}$	$\mathrm{HCF}=3$
Factors of $8=\{1 ; 2 ; 4 ; 8\}$	$\mathrm{HCF}=1$
Factors of $10=\{1 ; 2 ; 5 ; 10\}$	$\mathrm{HCF}=1$

32 Simplest form continued

Write in the simplest form.
Answers:
a. Factors of $6:\{1 ; 2 ; 3 ; 6\}$
$\frac{6}{18} \div \frac{6}{6}=\frac{1}{3}$
b. Factors of 15: $\{1 ; 3 \times 15\}$
$\frac{15}{25} \div \frac{5}{5}=\frac{3}{5}$
c. Factors of 3: $\{1,3\}$
$\frac{3}{9} \div \frac{3}{3}=\frac{1}{3}$
d. Factors of 7: $\{1,7\}$
$\frac{7}{21} \div \frac{7}{7}=\frac{1}{3}$
e. Factors of 4: $\{1 ; 2,4\}$
$\frac{4}{36} \div \frac{4}{4}=\frac{1}{9}$

Factors of 18: $\{1 ; 2 ; 3 \widetilde{6} ; 18\}$

Factors of 25 : $\{1,5 ; 25\}$

Factors of 9: $\{1,3 ; 9\}$

Factors of 21: $\{1 ; 3 \times 21\}$

Factors of 36: $\{1 ; 2 ; 3$,4; $6 ; 9 ; 18 ; 36\}$
f. Factors of $18:\{1 ; 2 ; 3 ; 6 ; 9$;18) Factors of $36:\{1 ; 2 ; 3 ; 4 ; 6$; 9 ; (18) 36$\}$ $\frac{18}{36} \div \frac{18}{18}=\frac{1}{2}$

Fill in the missing words
(common factor, numerator and denominator)
Answers:
a. Fractions can be simplified when the numerator and denominator have a common factor in them.
b. Give five examples of fractions that could be simplified.

$$
\frac{3}{6}=\frac{1}{2}, \frac{12}{36}=\frac{1}{3}, \frac{18}{54}=\frac{1}{3}, \frac{9}{27}=\frac{1}{3}, \frac{6}{18}=\frac{1}{3}
$$

```
What is \(\frac{324}{414}\) in its simplest form
```


## Answer:

$$
\frac{324}{414} \div \frac{18}{18}=\frac{18}{23}
$$

Reflection questions
Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 33 Add common fractions with the same and different denominators

## Objectives

- Addition and subtraction of common fractions, including mixed numbers, limited to fractions with the same denominator or where one denominator is a multiple of another
- Extend addition and subtraction of fractions where one denominator is not multiple of the other


## Dictionary

Proper Fraction: A proper fraction is a fraction in which the numerator (the top number) is smaller than the denominator (the bottom number). It is less than one. E.g.: $\frac{3}{4}$

Improper Fraction: An improper fraction is where the numerator (the top number) is greater than or equal to the denominator (bottom number). E.g.: $\frac{5}{2}$
Mixed Fraction: A mixed fraction is a whole number and proper fraction combined into one "mixed number". It is larger than one. Also called a mixed number. E.g.: $2 \frac{1}{4}$
A mixed fraction can be changed into an improper fraction and vice versa.

Common Fraction: A common fraction is a fraction in which the numerator and denominator are both integers, as opposed to fractions. Also called a vulgar fraction.

## Dictionary

Adding and subtracting fractions: You can add and subtract fractions with the same denominators, e.g.: $\frac{1}{4}+\frac{3}{4}-\frac{1}{4}=\frac{3}{4}$
You need to find the lowest common multiple of the denominators where the fractions have different denominators, e.g.

$$
\frac{2}{8}+\frac{2}{4}-\frac{3}{8}=\frac{2}{8}+\frac{4}{8}-\frac{3}{8}=\frac{3}{8}
$$

If the answer is an improper fraction it should be written as a mixed number, e.g.
$\frac{3}{4}+\frac{2}{4}=\frac{5}{4}=1 \frac{1}{4}$

## Introduction

Ask the learners to:

- Give five fractions where the denominators are the same.
- Give five fractions where the denominators are different. Ask learners to look at the example of changing a mixed fraction to an improper fraction. How did we do it? Give learners enough time to explore this and come up with a solution. Will changing a mixed fraction always give you an improper fraction or can you get a proper fraction too?


## 33 Add common fractions with the same and different denominators




In your own words write down how you will add. a. Fractions with the same denominators.
b. Fractions with denominators that are multiples of each other.
Answers: Learner's own answer.

81


Answer: $\frac{8}{10}=\frac{4}{5}$

## 34 Multiply unit fractions by unit fractions

## Objectives

- Multiply common fractions, including mixed numbers, not limited to fractions where one denominator is a multiple of another


## Dictionary

Unitary fraction: A unit or unitary fraction is a fraction where the
numerator is one. E.g. $\frac{1}{4}$

## Introduction

Tell the learners to multiplying fractions you simply multiply the numerators with each other, and the denominators with each other. Give learners one example (see question 1) and ask them to come up with another five. Solve 10 examples with learners on the board.

Compare the two calculations on the right. What do you notice?

=
When you are multiplying fractions yo simply multiply the numerators with each other, and the denominators $w$
each other. In this example the sum means $\frac{1}{2}$ OF $\frac{1}{4}$ which is $\frac{1}{8}$.


## 34 Multiply unit fractions by unit fractions cont...




## Reflection questions

Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 35 Multiply common fractions by common fractions with the same and different denominators

## Objectives

Multiply common fractions, including mixed numbers, not limited to fractions where one denominator is a multiple of another

## Dictionary

Denominator: The bottom number in a fraction is the denominator. E.g. $\frac{2}{3}$ 3 is the denominator. It tells you how many parts make up the whole (in this example, 3 parts).
Numerator: The top number in a fraction is the numerator. E.g. $\frac{2}{3}, 2$ is the numerator. It tells you how many parts of the whole there are (in this example, 2 parts).



35 Multiply common fractions by common fractions with the same and different denominators



Common errors
Make notes of common errors made by the learners.

## 36 Multiply whole numbers by common fractions

## Objectives

- Multiply common fractions, including mixed numbers, not limited to fractions where one denominator is a multiple of another


## Dictionary

Whole number: an integer or natural number
Common fractions: A common fraction is a fraction in which the numerator and denominator are both integers, as opposed to fractions. Also called a vulgar fraction.

## Introduction

86
Ask the learners to look at the following examples and discuss it with a friend.
$2=\frac{2}{1}$
$78=\frac{78}{1}$
$356=\frac{356}{1}$
$1245=\frac{1245}{1}$

Ask the learners to write the following as fractions:
Look at the following and discuss it with a friend.



## 36 Multiply whole numbers by common fractions cont...

What multiplicatin sums using a whole number and a fraction will give you the following answers?

Example:


Answers: these are some of the possible answers.
a. $\frac{2}{1} \times \frac{2}{6}=2 \times \frac{2}{6}$
b. $\frac{9}{1} \times \frac{1}{10}=9 \times \frac{1}{10}$
c. $\frac{1}{1} \times \frac{3}{8}=1 \times \frac{3}{8}$
d. $\frac{15}{1} \times \frac{3}{10}=15 \times \frac{1}{50}$
or $\frac{3}{1} \times \frac{1}{8}=3 \times \frac{1}{8}$
or $\frac{5}{1} \times \frac{3}{50}=5 \times \frac{3}{50}$
e. $\frac{7}{1} \times \frac{1}{21}=7 \times \frac{1}{21}$
f. $\frac{6}{1} \times \frac{1}{24}=6 \times \frac{1}{24}$


One fifth of 15 cell phones on special were sold. How many were not sold? Answers:
$\frac{4}{5}$ were not sold
5
$\frac{4}{5}$ of 15
$\stackrel{5}{5} \times \frac{15}{1}$
$=12$ phones were not sold


Answers: these are the only four possible solutions if the denominator of 12 remains unchanged
$8 \times \frac{1}{12}$
$4 \times \frac{2}{12}$
$2 \times \frac{4}{12}$
$1 \times \frac{8}{12}$

## 37 Multiply common fractions and simplify

## Objectives

- Multiply common fractions, including mixed numbers, not limited to fractions where one denominator is a multiple of another
- Simplify fractions by dividing numerators and denominators by common factors
- Use knowledge of multiples and factors to write fractions in the simplest form before or after calculations


## Dictionary

Simplify fractions: Simplifying fractions means to make the fraction as simple as possible.

## Introduction

Tell learners simplifying fractions means to make the fraction as simple as possible. Why say four-eighths ( $\frac{4}{8}$ ) when you really mean half $\left(\frac{1}{2}\right)$ ?

Ask learners to explain the simplification on the right hand side of the introduction.



Simplify the following:
Example:


Answers:
a. $\frac{4}{12} \div \frac{4}{4}=\frac{1}{3}$
b. $\frac{8}{16} \div \frac{8}{8}=\frac{1}{2}$
c. $\frac{5}{20} \div \frac{5}{5}=\frac{1}{4}$
d. $\frac{16}{24} \div \frac{8}{8}=\frac{2}{3}$
e. $\frac{7}{2} \div \frac{7}{7}=\frac{1}{3}$
f. $\frac{24}{64} \div \frac{8}{8}=\frac{3}{8}$

Multiply and simplify if possible.
a. $\frac{4}{16} \div \frac{4}{4}=\frac{1}{4}$
b. $\frac{21}{42} \div \frac{21}{21}=\frac{1}{2}$
c. $\frac{80}{120} \div \frac{40}{40}=\frac{2}{3}$
d. $\frac{5}{15} \div \frac{5}{5}=\frac{1}{3}$
e. $\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}$
f. $\frac{2}{14} \div \frac{2}{2}=\frac{1}{7}$

## 37 Multiply common fractions and simplify continued



Answers:
a. $\frac{21}{12}=1 \frac{9}{12}=1 \frac{3}{4}$
b. $\frac{36}{15}=2 \frac{6}{15}=2 \frac{3}{5}$
c. $\frac{48}{28}=1 \frac{20}{28}=1 \frac{5}{7}$
d. $\frac{45}{32}=1 \frac{13}{32}$
e. $\frac{54}{40}=1 \frac{14}{40}=1 \frac{7}{20}$
f. $\frac{54}{21}=2 \frac{12}{21}$


Answers:
An example:
a. $\frac{32}{80} \div \frac{16}{16}=\frac{2}{5}$
b. $\frac{7}{3} \times \frac{5}{4}=\frac{35}{12}=2 \frac{10}{12}=2 \frac{5}{6}$

## 38 Solve fraction problems

Topic: Fractions Content links: R7, 30-37, 39 Grade 8 links: R5, 65-67, 73 Grade 9 links: R5, 11-14

## Objectives

Solve problems in contexts involving common fractions and mixed numbers, including grouping, sharing and finding fractions of whole numbers

Dictionary
Problem solving: to work out an answer to a problem

## Introduction

90
Ask the learners what problem solving is? Discuss with learners how they feel when solving problems in maths. Tell them that solving problems is a skill that we can apply in daily life. Ask learners why we say doing maths problems is teaching us a life skill. Ask learners to complete the comic. Give learners the opportunity to read comic strips to the class. Write down key words on the board on problem solving.

Complete this conversation about why we should solve problems in mathematics.






Common errors
Make notes of common errors made by the learners.

## 39 Solve more fraction problems

## Objectives

Solve problems in contexts involving common fractions and mixed numbers, including grouping, sharing and finding fractions of whole numbers.

Dictionary
Problem solving: To work out an answer to a problem.

## 92

## Introduction

Ask the learners what problem solving is? Ask learners why we say doing maths problems is teaching us a life skill. Ask learners to complete the comic. Give learners the opportunity to read comic strips to the class. Write down key words on the board on problem solving.

Solve these measurement of distance problems: Answers:
a.
$\frac{1}{2}$ of a km
$=\frac{1}{2}$ of 1000 m
$=\frac{1}{2} \times 1000$
$=500 \mathrm{~m}$
b.
$\frac{1}{4}$ of a km
$=\frac{1}{4}$ of 1000 m
$=\frac{1}{4} \times 1000$
$=250 \mathrm{~m}$

$$
\begin{aligned}
\text { c. } & \frac{1}{4} \text { of a cm } \\
& =\frac{1}{4} \text { of } 10 \mathrm{~mm} \\
& =\frac{1}{4} \times 10 \\
& =\frac{10}{4} \mathrm{~mm}=2,5 \mathrm{~mm} \\
\text { e. } & \frac{1}{4} \text { of a metre } \\
& =\frac{1}{4} \text { of } 100 \mathrm{~cm} \\
& =\frac{1}{4} \times 100 \\
& =25 \mathrm{~cm}
\end{aligned}
$$

d. $\frac{1}{5}$ of a km
$=\frac{1}{5}$ of 1000 m
$=\frac{1}{5} \times 1000$
$=200 \mathrm{~m}$
f. $\frac{1}{2}$ of a cm
$\stackrel{2}{2}$ of 10 mm
$=\frac{1}{2} \times 10$
$=5 \mathrm{~mm}$

Solve these travel distance problems. If I completed __ of the distance, how far do I still have to travel? Answers:
a. $\underline{1}$ of $500 \mathrm{~km}=50 \mathrm{~km} \therefore$ I still need to travel 450 km
$\overline{4}$
b. $\frac{1}{12}$ of $500 \mathrm{~km}=41,67 \mathrm{~km} \therefore$ I still need to travel $458,33 \mathrm{~km}$
c. $\frac{1}{2}$ of $500 \mathrm{~km}=250 \mathrm{~km} \therefore$ I still need to travel 250 km
d. $\frac{1}{3}$ of $500 \mathrm{~km}=166,67 \mathrm{~km} \therefore$ I still need to travel $333,33 \mathrm{~km}$
e. $\frac{1}{4}$ of $500 \mathrm{~km}=125 \mathrm{~km} \therefore$ I still need to travel 375 km
f. $\overline{6}$ of $500 \mathrm{~km}=83,33 \mathrm{~km} \therefore$ I still need to travel $416,67 \mathrm{~km}$

## 39 Solve more fraction problems cont...



## 40 Fractions, decimals and percentages

## Objectives

Revise the following done in Grade 6:

- Recognize equivalence between common fraction and decimal fraction forms of the same number
- Find percentages of whole numbers
- Calculate the percentage of part of a whole
- Solve problems in contexts involving percentages


## Dictionary

Percent/percentage: A value expressed as a fraction of 100 . Symbol for percentage: \% Per-cent means 'per hundred'.

Equivalence between common fractions, decimal fractions and percentage: Common fractions, decimal fractions and percentages with the same value may look different but are the same,
E.g. $=25 \%=0,25=\frac{25}{100}$

## Introduction

94
Ask the learners to explain the diagram in the introduction section.


Quick quiz:
What does the following mean:

- Cent? There are 100 cents in a Rand. Cent means 100.
- Century? There are 100 years in a century.
- Centipede? A creature with 100 legs.
- Percentage? Per cent means per hundred.


Write the following as a fraction and a decimal fraction:


| Answers: |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a. $\frac{37}{100}$ b. $\frac{25}{100}$ c. $\frac{83}{100}$ d. $\frac{90}{100}$ <br> e. $\frac{55}{100}$ f. $\frac{3}{100}$   <br> $=0,37$ $=0,25$ $=0,83$ $=0,9$$=0,55$ | $=0,03$ |  |  |

## 40 Fractions, decimals and percentages continued

	Write the following as a fraction in its simplest form: Answers: The pattern is $10 \%$ increases from $10 \%$ to $100 \%$									
Percentage	10\%	20\%	30\%	40\%	50\%	60\%	70\%	80\%	90\%	100\%
Fraction	$\frac{10}{100}$	$\frac{20}{100}$	$\frac{30}{100}$	$\frac{40}{100}$	$\frac{50}{100}$	$\frac{60}{100}$	$\frac{70}{100}$	$\frac{80}{100}$	$\frac{90}{100}$	$\frac{100}{100}$
Simplest form	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{7}{10}$	$\frac{4}{5}$	$\frac{9}{10}$	$\frac{1}{1}$
Calculate   a. $\begin{aligned} & \frac{20}{100} \times \frac{\mathrm{R} 24}{1} \\ & =\frac{480}{100} \div \frac{20}{20} \\ & =\frac{24}{5}=4 \frac{4}{5} \\ & =\mathrm{R} 4,80 \end{aligned}$   b. $\begin{aligned} & \frac{70}{100} \times \frac{\text { R15 }}{1}=1 \\ & \frac{1050}{100} \div \frac{50}{50} \\ & =\frac{21}{2}=10 \frac{1}{2} \\ & =\text { R10,50 } \end{aligned}$   c. $\begin{aligned} & \frac{60}{100} \times \frac{\mathrm{R} 95}{1} \\ & \frac{5700}{100} \div \frac{100}{100} \\ & =\text { R } 57\end{aligned}$ $\begin{aligned} \text { d. } & \frac{80}{100} \times \frac{\mathrm{R} 74}{1} \\ & =\frac{5920}{100} \\ & =\text { R } 59,20 \end{aligned}$   e. $\frac{30}{100} \times \frac{\mathrm{R} 90}{1}$   f. $\frac{50}{100} \times \frac{\mathrm{R} 65}{1}$   $=\frac{2700}{100}$   $=\frac{3250}{100}$	Calculate $\text { a. } \begin{aligned} & \frac{20}{100} \times \frac{\mathrm{R} 24}{1} \\ = & \frac{480}{100} \div \frac{20}{20} \\ = & \frac{24}{5}=4 \frac{4}{5} \\ = & \mathrm{R} 4,80 \end{aligned}$   b. $\begin{aligned} & \frac{70}{100} \times \frac{\mathrm{R} 15}{1}=1 \\ & \frac{1050}{100} \div \frac{50}{50} \\ & =\frac{21}{2}=10 \frac{1}{2} \\ & =\text { R10,50 } \end{aligned}$   d. $\frac{80}{100} \times \frac{\mathrm{R} 74}{1}$   e. $\frac{30}{100} \times \frac{\mathrm{R} 90}{1}$   f. $\frac{50}{100} \times \frac{\mathrm{R} 65}{1}$   $=\frac{5920}{100}$   $=\frac{2700}{100}$   $=\frac{3250}{100}$ $=\mathrm{R} 59,20$   $=\mathrm{R} 27$   $=\mathrm{R} 32,50$									



## 41 Percentage increase and decrease

## Objectives

- Recognize equivalence between common fraction and decimal fraction forms of the same number
- Calculate percentage increase or decrease of a whole.
- Solve problems in contexts involving percentages.


## Dictionary

Decrease: make something smaller (in size or quantity)
Increase: make something bigger (in size or quantity)



## Calculate the percentage increase.

Example: Calculate the percentage increase if the price of a bus ticket of R60 is increased to R84.
$\frac{24}{60} \times \frac{100}{1}$


Answers:
a. R20
$=\frac{20}{50} \times \frac{100}{1}$
$=40 \%$
b. R40
$=\frac{40}{80} \times \frac{100}{1}$
$=50 \%$
c. R3
$=\frac{3}{15} \times \frac{100}{1}$
$=20 \%$
d. R5
$=\frac{5}{25} \times \frac{100}{1}$
= 20\%
e. R20
$=\frac{20}{100} \times \frac{100}{1}$
$\frac{20}{100} \times \frac{10}{1}$
$=20 \%$
f. R 18
$=\frac{18}{36} \times \frac{100}{1}$
$=50 \%$

Name an item which you really like, the price of which was increased recently. What was the percentage increase? Anwer: Learner's own answer

## 41 Percentage increase and decrease continued



## 42 Place value, ordering and comparing decimals

## Objectives

Revise the following done in Grade 6:

- Compare and order decimal fractions to at least two decimal place
- Place value of digits to at least two decimal places
- Count forwards and backwards in decimal fractions to at least two decimal places
- Use knowledge of place value to estimate the number of decimal places in the result before performing calculations


## Dictionary

Decimal fraction: A decimal fraction is a fraction where the
denominator (the bottom number in a common fraction) is a power of ten (such as 10, 100, 1000 , etc). Decimal fractions are written with a decimal comma (or point) and no denominator.
This makes it a lot easier to do calculations like addition and multiplication with fractions. e.g $2,45=2+0,4+0,05$

## Introduction

Ask the learners to look at the introduction and explain each block using words such as tenths, hundredths, and thousandths.

## 42 Place value, ordering and comparing decimals continued

	Write the following in the correct column: Answers:					
Thousands	Hundreds	Tens	Units	Tenths	Hundredths	Thousandths
			4	7	6	5
		1	8	3	4	6
		1	9	0	0	5
	2	3	1	0	4	
7	6	8	5	2		
	Write down the value of the underlined digit:   Answers:   a. 0,05 or 5 hundredths   b. 0,02 or 2 hundredths   c. 5 or 5 units   d. 0,09 or 9 hundredths   e. 8 or 8 units   f. 0,002 or 2 thousandths   Write the following in ascending order:   Answers:   a. 0,$004 ; 0,04 ; 0,4$   b. 0,$011 ; 0,1 ; 0,11$   c. 0,$9 ; 0,99 ; 0,999$   d. 0,$753 ; 0,8 ; 0,82$   e. 0,$007 ; 0,06 ; 0,67$					



## Fill in $<,>,=$

Answers:
a. $0,4>0,04$
c. $0,1=0,10$
b. $0,05>0,005$
d. $0,62>0,26$
e. $0,58<0,85$
f. $0,37<0,73$
h. $0,2=0,20$
g. $0,123<0,3$
j. $0,05=0,050$

Reflection questions
Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 43 Writing common fractions as decimals

## Objectives

- Recognize equivalence between common fraction and decimal fraction forms of the same number
- Count forwards and backwards in decimal fractions to at least two decimal places
- Use knowledge of place value to estimate the number of decimal places in the result before performing calculations
- Solve problems in contexts involving percentages


## Dictionary

Decimal fraction: A decimal fraction is a fraction where the denominator (the bottom number in a common fraction) is a power of ten (such as 10, 100, 1000 , etc). Decimal fractions are written with a decimal comma (or point) and no denominator.
This makes it a lot easier to do calculations like addition and multiplication with fractions. e.g $2,45=2+0,4+0,05$

## Introduction

98
Ask the learners to look at the introduction and explain it.


Write as a decimal fraction: Answers:
a. 0,6
b. 0,7
c. 0,008
d. 0,4
e. 0,005
f. 0,003

Write as a decimal fraction: Answers:
a. 0,45 b. 0,76
c. 0,98
d. 0,36
e. 0,476
f. 0,075

Write as a decimal fraction: Answers:

a. 3,6	b. 67,05	c. 8,8	d. 32	e. 76,5	f. 93,47

Write as a common fraction: Answers:
a. $\frac{95}{10}$
b. $\frac{1515}{100}$
c. $\frac{8934}{1000}$
d. $\frac{376}{100}$
e. $\frac{32004}{1000}$
f. $\frac{76}{10}$ Write as a decimal fraction: Answers:
a. $\frac{1}{5}=\frac{2}{10}=0,2$
b. $\frac{1}{4}=\frac{25}{100}=0,25$
c. $\frac{1}{2}=\frac{5}{10}=0,5$
d. $\frac{3}{5}=\frac{6}{10}=0,6$
e. $\frac{2}{4}=\frac{5}{10}=0,5$
f. $\frac{1}{25}=\frac{4}{100}=0,04$

## 44 Writing common fractions as decimals

## Objectives <br> \section*{Revise}

- Count in decimal fractions
- Rounding off decimal fractions to at least 1 decimal place
- Recognize equivalence between common fraction and decimal fraction forms of the same number
- Count forwards and backwards in decimal fractions to at least two decimal places
- Use knowledge of place value to estimate the number of decimal places in the result before performing calculations
- Solve problems in contexts involving percentages


## Dictionary

Rounding (decimals): Rounding means shortening a number. The value of the last digit of the shortened number is increased by 1 if the first of the discarded digits is 5 or more. Rounded numbers are less accurate but easier to use.

- 3,6 rounded off to the nearest unit is 4
- 2,32 rounded off to the nearest tenth is 2,3
- 1,738 rounded off to the nearest hundredth is 1,74


## 44 Writing common fractions as decimals continued



	Round off to the nearest tenth:				
			Unit	Tenth	
	a.	3,84	4	3,8	
	b.	3,89	4	3,9	
	c.	14,27	14	14,3	
	d.	999,31	999	999,3	
	e.	4,09	4	4,1	
	$f$	51,781	52	51,8	
103	Problem solving				
	a. Give five examples of decimal fractions that will be between 0,08 and 0,09 .   b. Give five examples of numbers you could have rounded off to 5 .				
	Answer: Examples of answers.   a. 0,$081 ; 0,082 ; 0,083 ; 0,084 ; 0,085$   b. Round off to the nearest 5			iv. 5,48	v. 5,09
Reflection questions Did learners meet the objectives?					
Common errors   Make notes of common errors made by the learners.					

## 45 Addition and subtraction with decimal fractions

## Objectives

- Addition and subtraction of decimal fractions with at least two decimal places
- Solve problems in context involving decimal fractions


## Dictionary

Decimal fraction: A decimal fraction is a fraction where the denominator (the bottom number in a common fraction) is a power of ten (such as 10, 100, 1000 , etc). Decimal fractions are written with a decimal comma (or point) and no denominator.
This makes it a lot easier to do calculations like addition and multiplication with fractions. e.g. $2,45=2+0,4+0,05$

## Introduction

104
Learners look at the pictures and make up addition and/or subtraction sums. Possible examples:
$1,25 l+0,5 l+1 l=2,75 l$
$3,5+3,5+4,7+4,7=16,4 \mathrm{~m}$
$2,5 \mathrm{~kg}+0,5 \mathrm{~kg}+1 \mathrm{~kg}=4 \mathrm{~kg}$
Calculate using both methods. Check your answer. Answers:
a. $3,12 \quad 3,12+4,57$

$$
\begin{aligned}
+4,57 & =(3+4)+(0,1+0,5)+(0,02+0,07) \\
+7,69 & =7+0,6+0,09 \\
& =7,69
\end{aligned}
$$

b. 5,34 or $5,34+2,26$
$=(5+2)+(0,3+0,2)+(0,04+0,06)$
$=7+0,5+0,1$
$=7,6$
or $1,46+2,28$
$=(1+2)+(0,4+0,2)+(0,06+0,08)$
$=3+0,6+0,14$
$=3+0,6+0,1+0,04$
$=3,74$
d. 3,45
$+4,67$
8,12
e.

6,78
$+12,36$
$\begin{array}{r}12,36 \\ \hline\end{array}$
3,45 +4, 67
$=(3+4)+(0,4+0,6)+(0,05+0,07)$
$=7+1+0,12$
$=8+0,12$
$=8,12$
or $6,58+5,78$
$=(6+5)+(0,5+0,7)+(0,08+0,08)$
$=11+1,2+0,16$
$=12+0,3+0,06$
$=12,36$
or $9,99+9,97$
$=(9+9)+(0,9+0,9)+(0,09+0,07)$
$=18+1,8+0,16$
$=18+1+0,8+0,1+0,06$
$=19+0,9+0,06$
$=19,96$

## 45 Addition and subtraction with decimal fractions continued



Calculate using both methods.
a. 1,15
$\begin{array}{r}1,15 \\ +2,21 \\ \hline 3,36\end{array}$ 3,36
-1,21
2,15
Method 2:
$1,15+2,21-1,21$
$=(1+2-1)+(0,1+0,2-0,2)+(0,05+0,01-0,01)$
$=2+0,1+0,05$
$=2,15$
b. 2,34
$\begin{array}{r}+3,42 \\ \hline 5,76\end{array}$
$\begin{array}{r}-2,34 \\ \hline 3,42\end{array}$
3,42

## Method 2: <br> $2,34+3,42-2,34$ <br> $=(2+3-2)+(0,3+0,4-0,3)+(0,04+0,02-0,04)$ <br> $=3+0,4+0,02$ <br> $=3,42$

C. $\begin{array}{r}3,24 \\ +3,35 \\ \hline 6,59 \\ -5,36 \\ \hline 1,23\end{array}$

## Method 2:

3,24 + 3,35-5,36
$=(3+3-5)+(0,2+0,3-0,3)+(0,04+0,05-0,06)$ $=1+0,2+0,03$
$=1,23$
d. 4,760
$+6,112$
10, 87
$\begin{array}{r}-3,52 \\ \hline 7,35\end{array}$
Method 2:
$4,76+6,11-3,52$
$=(4+6-3)+(0,7+0,1-0,5)+(0,06+0,01-0,02)$ $=7+0,3+0,05$
$=7,35$
Make five different number sentences using the following decimals. Solve it. 2,56; 1,99 and 3,47. Answers:
a. $2,56-1,99=0,57$
b. $1,99+3,47=5,46$
c. $3,47-2,56=0,91$
d. $3,47-1,99=1,48$
e. $256+1,99=4,55$
My friend went on a diet and lost 2.5 kg the first week, and $1,25 \mathrm{~kg}$ the second week. He gained 0.75 kg
he third week and lost 0.5 kg the fouth week. How much did he lose in the four weeks? (Remember it is the third week and lost 0.5 kg the fourth week. How much diak
not healthy to lose too much weight in a short period of time.)

Answer:
$2,5+1,25-0,75+0,5=3,5 \mathrm{~kg}$. He lost a total of $3,5 \mathrm{~kg}$ for four weeks

## 46 Multiplication of decimal fractions

## Objectives

- Multiplication of decimal fractions by 10 and 100
- Multiply decimal factions to include decimal fractions to at least 2 decimal places by decimal fractions to at least 1 decimal place
- Multiply decimal factions to include decimal fractions to at least 3 decimal places by whole numbers
- Solve problems in contexts involving decimal fractions


## Dictionary

Decimal fraction: A decimal fraction is a fraction where the
denominator (the bottom number in a common fraction) is a power of ten (such as 10, 100, 1000 , etc). Decimal fractions are written with a decimal comma (or point) and no denominator.
This makes it a lot easier to do calculations like addition and multiplication with fractions. e.g $2,45=2+0,4+0,05$

## Introduction

Look at the following pictures. Make up your own addition, subtraction and multiplication sum for each.



Calculate. Check your answers using a calculator.

## Example: <br> - $0,2 \times 0,3=0,06$ <br> - $0,02 \times 0,3=0,006$

- $0,02 \times 0,03=0,0006$

Answers:

a. 0,08	b. 0,03	c. 0,20	d. 0,42	e. 0,0008	f. 0,005

Calculate. Check your answers using a calculator.

$\quad$Example 1: $0,2 \times 4$   $=0,8$	Example 2: $0,02 \times 4$   $=0,08$	Example 3: $0,4 \times 3$   $=1,2$
Answers		
a. $0,5 \times 3=1,5$ b. $0,8 \times 3=2,4$ c. $0,6 \times 4=2,4$		
d. $0,02 \times 9=0,18$	e. $0,07 \times 6=0,42$	f. $0,003 \times 8=0,024$



Calculate. Check your answers using a calculator.
Example 1: $0,3 \times 0,2 \times 100$
Example 2: $0,3 \times 0,2 \times 10$

## $=0,06 \times 100$

$=0,06 \times 10$ $=0,6$

Answers:
a. $0,4 \times 0,2 \times 10$
$=0,08 \times 10$
$=0,8$
b. $0,5 \times 0,02 \times 10$ $=0,01 \times 10$ $=0,1$
$0,3 \times 0,3 \times 100$ $=0,09 \times 100$ $=9$
d. $0,6 \times 0,03 \times 100$ $=0,018 \times 100$ $=1,8$
e. $0,5 \times 0,2 \times 100$ $=0,1 \times 100$ $=10$
f. $0,7 \times 0,01 \times 100$ $=0,007 \times 100$ $=0,7$

## 46 Multiplication of decimal fractions continued



Calculate. Check your answers using a calculator. Answers:
a. $1,123 \times 10$
$=(1 \times 10)+(0,1 \times 10)+(0,02 \times 10)+(0,003 \times 10)$
$=10+1+0,2+0,03=11,23$
b. $4,886 \times 30$
$=(4 \times 30)+(0,8 \times 30)+(0,08 \times 30)+(0,006 \times 30)$ $=120+242,4+0,18=146,58$
c. $2,932 \times 40$
$=(2 \times 40)+(0,9 \times 40)+(0,03 \times 40)+(0,002 \times 40)$
$=80+361,2+0,08=117,28$
d. $7,457 \times 60$
$=(7 \times 60)+(0,4 \times 60)+(0,05 \times 60)+(0,007 \times 60)$
$=420+24+3+0,42=447,42$
e. $8,234 \times 20$
$=(8 \times 20)+(0,2 \times 20)+(0,03 \times 20)+(0,004 \times 20)$
$=160+4+0,6+0,08=164,68$
f. $6,568 \times 80$
$=(6 \times 80)+(0,5 \times 80)+(0,06 \times 80)+(0,008 \times 80)$
$=480+40+4,8+0,64=525,44$
g. 11,23; 117,28; 146,$58 ; 164,68 ; 447,42 ; 525,44$


## 47 Division, rounding off and flow diagrams

## Objectives

- Solve problems in contexts involving decimal fractions.
- Divide decimal fractions including decimal fractions to at least

2 decimal places by whole numbers.

- Round off decimal fractions.


## Dictionary

Rounding(decimals): Rounding means reducing or increasing the digit in a number while trying to keep it's value similar. The result is less accurate, but easier to use. E.g.:
3,6 rounded off to the nearest unit is 3
2,32 rounded off to the nearest tenth is 2,3
1,738 rounded off to the nearest hundredth is 1,74

## Introduction

Ask the learners to look at the patterns and describe them. Ask the learners to explain to a friend what rounding off to the nearest whole number and tenth mean if you work with decimals.
Look at the following two patterns and describe them.

$800 \div 4=200$	$80 \div 4=20$	$\mid 8 \div 4=2$	$0.8 \div 4=0.2$	$0.08 \div 4=0.02$
$150 \div 3=50$	$15 \div 3=5$	$1.5 \div 3=0.5$	$0.15 \div 3=0.05$	$0.015 \div 3=0.005$

Explain to a friend what rounding off to the nearest whole number or to a tenth means if you work with decimals.


## 47 Division, rounding off and flow diagrams continued



## 48 Flow diagrams

Topic: Input and output values Content links: R9, 49-51, 72, 118-119 Grade 8 links: R7, 28, 106, 109 Grade 9 links: R7

## Objectives

- Determine input values, output values or rules for patterns and relationships using:
- Flow diagrams
- Formulae
- Determine, interpret and justify equivalence of different descriptions of the same relationship or rule presented:
- In flow diagrams
- By formulae
- By number sentences
- Verbally


## Dictionary

Functions: A function is the means of matching or relating one set of values with another set of values. For example, if we have a function +3 then the value 1 in the one set will match the value 4 in the other set. Input (1) -> Function (+3) -> Output (4)
Flow diagram: A diagram of the sequence of operations.
Formula: An equation using numbers and symbols that shows you how to convert a measurement or measurements into another.


## 48 Flow diagrams continued

Topic: Input and output values Content links: R9, 49-51, 72, 118-119 Grade 8 links: R7, 28, 106, 109 Grade 9 links: R7


Prepare to present any flow diagram done in this lesson in a future lesson period.
Answer: Learner's own preparation
111 Praw a flow diagram where $a=b+7 . \quad$.


Reflection questions
Did learners meet the objectives?

## 49 More flow diagrams

## Objectives

- Determine input values, output values or rules for patterns and relationships using:
- Flow diagrams
- Formulae
- Determine, interpret and justify equivalence of different descriptions of the same relationship or rule presented:
- In flow diagrams
- By formulae
- By number sentences
- Verbally


## Dictionary

Functions: A function is the means of matching or relating one set of values with another set of values. For example, if we have a function +3 then the value 1 in the one set will match the value 4 in the other set.
Input (1) -> Function (+ 3) -> Output (4)
Flow diagram: A diagram of the sequence of operations
Formula: An equation using numbers and symbols that shows you how to convert a measurement or measurements into another.


## 49 More flow diagrams continued

Topic: Input and output values Content links: R9, 49-51, 72, 118-1 19 Grade 8 links: R7, 28, 106, 109 Grade 9 links: R7


The rule is $x=y \times 2+4$ i. $4 \times 2=8+4=12$ ii. $2 \times 2=4+4=8$ iii. $10 \times 2=20+4=24$ iv. $3 \times 2=6+4=10$
v. $7 \times 2=14+4=18$


The rule is $m=n+7 \times 2$
i. $7+7=14 \times 2=28$
ii. $8+7=15 \times 2=30$
iii. $12+7=19 \times 2=38$
iv. $4+7=11 \times 2=22$
v. $9+7=16 \times 2=32$


The rule is $c=b \times 3+1$
i. $2 \times 3=6+1=7$
ii. $6 \times 3=18+1=19$
iii. $1 \times 3=3+1=4$
iv. $10 \times 3=30+1=31$
v. $11 \times 3=33+1=34$


## Objectives

## Revise:

- Determine, interpret and justify equivalence of different descriptions of the same relationship or rule presented:
- in flow diagrams
- verbally
- in tables
- Determine input values, output values or rules for patterns and relationships using:
- formulae
- tables


## Dictionary

Functions: A function is the means of matching or relating one set of values with another set of values. For example, if we have a function +3 then the value 1 in the one set will match the value 4 in the other set. Input (1) -> Function (+3) -> Output (4)
Flow diagram: A diagram of the sequence of operations.
Formula: An equation using numbers and symbols that shows you how to convert a measurement or measurements into another.
Table: A way of presenting data in rows and columns.

## Introduction

Ask the learners to look at the example, and discuss the following:

- Flow diagram,
- Table, and
- Rule

What are the examples under the table showing us?


Complete the tables and show your calculations. Answers:
a. $y=x+2$

$x$	2	4	6	8	10	20
$y$	4	6	8	10	12	22


c. $n=m+4$

$m$	4	5	6	7	10	100
$n$	8	9	10	11	14	104

d. $z=x \times 2$

$x$	2	3	4	5	6	7
$z$	4	6	8	10	12	14

e. $y=2 x-1$

$x$	1	2	3	4	5	6	7
$y$	1	3	5	7	9	11	13



## 51 Input and output values

Topic: Input and output values Content links: 48-50, 72, 118-119 Grade 8 links: R7, 28, 106, 109 Grade 9 links: R7

## Objectives

## Revise:

- Determine input values, output values or rules for patterns and relationships using:
- formulae
- tables
- Determine, interpret and justify equivalence of different descriptions of the same relationship or rule presented:
- in flow diagrams
- verbally
- in tables


## Dictionary

Number sentence: an equation expressed using numbers and common mathematical symbols
Verbally: communicate in the form of spoken words

## Introduction

116
Tell the learners that you got these notes from two of your friends. Compare them.

Solve $m$ and $n$.

a.


$m ?$
$y=x+9$
$=25+9$
$=34$
$m$ is 34


$n ?$
$x=n$ and $y=39$
$y=x+9$
$39=n+9$
$39-9=n+9-9$
$30=n$
$n=30$

## 54 Topic: Input and output values Content links: 48-50, $72,118-119$ <br> Input and output values continued



## Objectives

- Calculate to at least 1 decimal place.
- Use appropriate formulae to calculate perimeter and area of: - Rectangles
- Squares
- Solve problems involving perimeter and area of polygons


## Dictionary

Perimeter: The perimeter of a shape is the distance around it.
Formula for the perimeter of square: $4 l$
Formula for the perimeter of a rectangle: $2 l+2 b$
Area: The amount of surface scovering a 2-dimensional space.
Formula for the area of a square: $l^{2}$
Formula for the area of a rectangle: $l x b$

## Introduction

118
Ask the learners
fo look a the picture and say what the perimeter is. What will the area of each shape be.? Learners can use calculators.

Look at the pictures and say what the perimeters are. What will the area of each


Answers
A fence
Perimeter: $2 l+2 b \quad$ Perimeter: $2 l+2 b$
$=2(6 \mathrm{~m})+2(5 \mathrm{~m})=2(105 \mathrm{~m})+2(68 \mathrm{~m})$
$=12 \mathrm{~m}+10 \mathrm{~m}$
$=22 \mathrm{~m}$
Area: $l \times b$
$=6 \mathrm{~m} \times 5 \mathrm{~m}$
$=30 \mathrm{~m}^{2}$
A soccer field
Perimeter: $2 l+2 b$
$=2(105 \mathrm{~m})+2(68 \mathrm{~m})$
$=210 \mathrm{~m}+136 \mathrm{~m}$
$=346 \mathrm{~m}$

Netball court
Perimeter: $2 \mathrm{l}+2 \mathrm{~b}$
$=2(30,5 \mathrm{~m})+2(15,25 \mathrm{~m})$
$=61 \mathrm{~m}+30,5 \mathrm{~m}$
$=91,5 \mathrm{~m}$
Area: $1 \times \mathrm{b}$
$=30,5 \mathrm{~m} \times 15,25 \mathrm{~m}$
$=465,125 \mathrm{~m}^{2}$

Calculate the perimeter and the area of the following polygons:

b. $2,9 \mathrm{~cm}$

c. $1,5 \mathrm{~cm}$

a. Perimeter: $2 l+2 b$
$=2(4,5)+2(2,2)$
$=9+4,4=13,4 \mathrm{~cm}$
Area: $l \times b$
$=4,5 \mathrm{~cm} \times 2,2 \mathrm{~cm}$
$=9,9 \mathrm{~cm}^{2}$
b. Perimeter: $2 l+2$
$=2(2,9)+2(1,4)$
$=2(2,9)+2(1,4)$
$=5,8+2,8=8,6 \mathrm{~cm}$
Area: $l \times b$
$=2,9 \mathrm{~cm} \times 1,4 \mathrm{~cm}$
$=4,06 \mathrm{~cm}^{2}$

Perimeter: $2 l+2 b$
$=2(1,5)+2(1,5)$
$=3+3=6 \mathrm{~cm}$
Area: $l \times b$
$=1,5 \mathrm{~cm} \times 1,5 \mathrm{~cm}$
$=2,25 \mathrm{~cm}^{2}$

52 Perimeter and area continued
Topic: Size, area and perimeter of 2-D shapes Content links: R12, R14, 53-55 Grade 8 links: R14, 82-86 Grade 9 links: R14, 60-64

Using the polygons A, B, and C above, draw each set of the polygons in two different ways so when joined together, they have

- the shortest possible perimeter
- the longest possible perimeter

Answers:


Shortest $=16,2 \mathrm{~cm}$


Longest $=19,2 \mathrm{~cm}$


Both the same $=16,4 \mathrm{~cm}$


Shortest $=11,6 \mathrm{~cm}$
d.

$4,5 \mathrm{~cm}$   A	
$2,9 \mathrm{~cm}$   B   $1,4 \mathrm{~cm}$	$1,5 \mathrm{~cm}$   C

Shortest $=16,4 \mathrm{~cm}$


Longest $=22,4 \mathrm{~cm}$
If the area is $\qquad$ what could the perimeter be? Answers: these are some possible answers
a. (i) $P=2(6)+2(6)$
$=12+12$
$=24 \mathrm{~cm}$
(ii) $\mathrm{P}=2(9)+2(4)$
$=18+8$
$=26 \mathrm{~cm}$
b. (i) $P=2(4)+2(3)$
$=8+6$
$=14 \mathrm{~cm}$
(ii) $\mathrm{P}=2(6)+2(2)$
$=12+4$
$=16 \mathrm{~cm}$
c. (i) $P=2(10)+2(10)$
$=20+20$
$=40 \mathrm{~cm}$
d. (i) $P=2(25)+2(5)$
$=50+10$
$=60 \mathrm{~cm}$
(ii) $\mathrm{P}=2(50)+2(2)$
$=100+4$
$=104 \mathrm{~cm}$
(ii) $\mathrm{P}=2(125)+2(1)$
$=250+2$
$=252 \mathrm{~cm}$

52 Perimeter and area continued
Topic: Size, area and perimeter of 2-D shapes Content links: R12, R14, 53-55 Grade 8 links: R14, 82-86 Grade 9 links: R14, 60-64

$$
\text { e. (i) } \begin{aligned}
\mathrm{P} & =2(6)+2(5) \\
& =12+10 \\
& =22 \mathrm{~cm}
\end{aligned}
$$

(ii) $\mathrm{P}=2(10)+2(3)$
$=20+6$
$=26 \mathrm{~cm}$
f. (i) $P=2(6)+2(3)$
$=12+6$
$=18 \mathrm{~cm}$
(ii) $P=2(9)+2(2)$
$=18+4$
$=22 \mathrm{~cm}$
${ }^{4}$
Measure the perimeter and calculate the area of each shape.
Give your answer in cm and mm. Answers: [note that these dimensions are approximate due to variations in size due to the printing process].
a. Perimeter:
$3 \mathrm{~cm}+3 \mathrm{~cm}+1,5 \mathrm{~cm}+1 \mathrm{~cm}+1,5 \mathrm{~cm}+2 \mathrm{~cm}=12 \mathrm{~cm}=120 \mathrm{~mm}$ Area:
$(2 \mathrm{~cm} \times 1,5 \mathrm{~cm})+(3 \mathrm{~cm} \times 1,5 \mathrm{~cm})=7,5 \mathrm{~cm}^{2}=750 \mathrm{~mm}^{2}$
b. Perimeter:
$0,75 \mathrm{~cm}+1 \mathrm{~cm}+1 \mathrm{~cm}+1 \mathrm{~cm}+0,75 \mathrm{~cm}+3 \mathrm{~cm}+0,75+1 \mathrm{~cm}$
$+1 \mathrm{~cm}+1 \mathrm{~cm}+0,75+3 \mathrm{~cm}=15 \mathrm{~cm}=150 \mathrm{~mm}$
Area:
$(1 \mathrm{~cm} \times 1 \mathrm{~cm})+(3 \times 2,5 \mathrm{~cm})+(1 \mathrm{~cm} \times 1 \mathrm{~cm})=9,5 \mathrm{~cm}^{2}=950 \mathrm{~mm}^{2}$
c. Perimeter:
$2 \mathrm{~cm}+2 \mathrm{~cm}+2 \mathrm{~cm}+1 \mathrm{~cm}+4 \mathrm{~cm}+3 \mathrm{~cm}=14 \mathrm{~cm}=140 \mathrm{~mm}$ Area:
$(2 \mathrm{~cm} \times 2 \mathrm{~cm})+(1 \mathrm{~cm} \times 4 \mathrm{~cm})=4 \mathrm{~cm}^{2}+4 \mathrm{~cm}^{2}$
$=8 \mathrm{~cm}^{2}=800 \mathrm{~mm}^{2}$


## Common errors

Make notes of common errors made by the learners.

## 53 Area of triangles

Topic: Size, area and perimeter of 2-D shapes Content links: R12, R14, 53-55 Grade 8 links: R14, 82-86 Grade 9 links: R14, 60-64

## Objectives

- Use appropriate formulae to calculate perimeter and area of triangles
- Solve problems, with or without a calculator involving perimeter and area of triangles


## Dictionary

Area of a triangle: the size of the surface inside the boundary of a triangle
Area of a triangle formula $=\frac{1}{2}$ base $\times$ vertical height
Perimeter of a triangle: The perimeter, P , of a triangle is given by the formula $P=a+b+c$ where $a, b$ and $c$ are the side lengths of the triangle.

## Introduction

120
Ask the learners what will they do with these quadrilaterals to change them into triangles

What will you do to these quadrilaterals to change them to triangles?


What is the area of the triangles? Use both methods.

Example:	
2 cm	
	$=\left(2 \mathrm{~cm} \mathrm{~cm}^{2}\right.$
2 cm	$=2 \mathrm{~cm} \times 2 \mathrm{~cm}$
	$=4 \mathrm{~cm}^{2}$

The triangle is half of the square.

Method 1	Method 2


$\frac{1}{2}$ of $4 \mathrm{~cm}^{2}$	$4 \mathrm{~cm}^{2} \div 2$
$=\frac{1}{2} \times 4 \mathrm{~cm}^{2}$	$=2 \mathrm{~cm}^{2}$
$=$	$\frac{1}{2} \times \frac{4}{1} \mathrm{~cm}^{2}$
$=$	
$=$	$\mathrm{cm}^{2}$
$=2 \mathrm{~cm}^{2}$	

Answers:
Area:

a. $l^{2}=(3 \mathrm{~cm})^{2}=9 \mathrm{~cm}^{2}$	b.
$9 \mathrm{~cm}^{2} \div 2=4,5 \mathrm{~cm}^{2}$	$\frac{1}{2} \times \frac{16}{1} \mathrm{~cm}^{2}=16 \mathrm{~cm}^{2}$
$\frac{1}{2}$ of $9 \mathrm{~cm}^{2}=\frac{1}{2} \times \frac{9}{1}$	$=8 \mathrm{~cm}^{2}$
$\frac{9}{2}=4,5 \mathrm{~cm}^{2}$	$=16 \mathrm{~cm}^{2} \div 2$
	$=8 \mathrm{~cm}^{2}$

b. $l^{2}=(4 \mathrm{~cm})^{2}=16 \mathrm{~cm}^{2}$ $\frac{1}{2} \times \frac{16}{1} \mathrm{~cm}^{2}$ $=8 \mathrm{~cm}^{2}$ $=8 \mathrm{~cm}^{2}$

## 53 Area of triangles continued

Topic: Size, area and perimeter of 2-D shapes Content links: R12, R14, 53-55 Grade 8 links: R14, 82-86 Grade 9 links: R14, 60-64


What is the area of the triangles?
Answers:
a. $5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2}$
$=\frac{1}{2} b \times h$
$=\frac{1}{2}(5 \mathrm{~cm}) \times 3 \mathrm{~cm}$
$=2,5 \mathrm{~cm} \times 3 \mathrm{~cm}=7,5 \mathrm{~cm}^{2}$
b. $4 \mathrm{~cm} \times 2,5 \mathrm{~cm}=10 \mathrm{~cm}^{2}$
$=\frac{1}{2} b \times h$
$=\frac{1}{2}(4 \mathrm{~cm}) \times 2,5 \mathrm{~cm}$
$=2 \mathrm{~cm} \times 2,5 \mathrm{~cm}=5 \mathrm{~cm}^{2}$
c. $=6 \mathrm{~cm} \times 5 \mathrm{~cm}=30 \mathrm{~cm}^{2}$
$=\frac{1}{2} b \times h$
$=\underline{1}(6 \mathrm{~cm}) \times 5 \mathrm{~cm}$
2
$=3 \mathrm{~cm} \times 5 \mathrm{~cm}=15 \mathrm{~cm}^{2}$
d. $8 \mathrm{~cm} \times 4 \mathrm{~cm}=32 \mathrm{~cm}^{2}$
$=\frac{1}{2} b \times h$
$=\frac{1}{2}(8 \mathrm{~cm}) \times 4 \mathrm{~cm}$
$=4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2}$

121
What is the area of a triangle if the base is 8 cm and the height is 3 cm ?


Reflection questions
Did learners meet the objectives?

Common errors
Make notes of common errors made by the learners.

## 54 More area of triangles

Topic: Size, area and perimeter of 2-D shapes Content links: R12, 52-53, 55 Grade 8 links: R14, 82-86 Grade 9 links: R14, 60-64

## Objectives

- Use appropriate formulae to calculate perimeter and area of triangles
- Solve problems, with or without a calculator involving perimeter and area of triangles


## Dictionary

Area of a triangle: the size of the surface inside the boundary of a triangle Area of a triangle formula $=\frac{1}{2}$ base $\times$ vertical height
Perimeter of a triangle: The perimeter, $P$, of a triangle is given by the formula $P=a+b+c$ where $a, b$ and $c$ are the side lengths of the triangle.

## Introduction

122
Look at these triangles. Compare them.


Answers:

2 cm
b.

c.


Calculate the area of the triangles. Answers
a. $\frac{1}{2} b \times h$
b. $\frac{1}{2} b \times h$
c. $\frac{1}{2} b \times h$
$\frac{1}{2}(2 \mathrm{~cm}) \times 2 \mathrm{~cm}$
$1 \mathrm{~cm} \times 2 \mathrm{~cm}$
$=2 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& 2,1 \times 2,1 \mathrm{~cm} \\
& =4,41 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2,2 \mathrm{~cm} \times 2,5 \mathrm{~cm} \\
& =5,5 \mathrm{~cm}^{2}
\end{aligned}
$$

Draw a triangle with the given measurements and then calculate the area. Answers: [Note that these dimensions are approximate due to variations in size due to the printing process.]
a.

$\frac{1}{2} b \times h$
$\frac{1}{2}(6 \mathrm{~cm}) \times 2 \mathrm{~cm}$
$3 \mathrm{~cm} \times 2 \mathrm{~cm}=6 \mathrm{~cm}^{2}$

54 More area of triangles cont...
Topic: Size, area and perimeter of 2-D shapes Content links: R12, 52-53, 55 Grade 8 links: R14, 82-86 Grade 9 links: R14, 60-64


Measure and calculate the area. Give your answer in $\mathrm{cm}^{2}$ and $\mathrm{mm}^{2}$. Answers: [note that these dimensions are approximate due to variations in size due to the printing process].
a. $\frac{1}{2} b \times h$
b. $\frac{1}{2} b \times h$
$=\frac{1}{2}(22 \mathrm{~cm}) \times 16 \mathrm{~cm}$
$=\frac{1}{2}(32 \mathrm{~cm}) \times 16 \mathrm{~cm}$
$=176 \mathrm{~cm}^{2}$
$=256 \mathrm{~cm}^{2}$
c. $\frac{1}{2} b \times h$
d. $\frac{1}{2} b \times h$
$=\frac{1}{2}(24 \mathrm{~cm}) \times 22 \mathrm{~cm}$
$=276 \mathrm{~cm}^{2}$
$=\frac{1}{2}(36 \mathrm{~cm}) \times 16 \mathrm{~cm}$
$=288 \mathrm{~cm}^{2}$
e. $\frac{1}{2} b \times h$
$=\frac{1}{2}(32 \mathrm{~cm}) \times 16 \mathrm{~cm}$
f. $\frac{1}{2} b \times h$
$=\frac{1}{2}(37 \mathrm{~cm}) \times 22 \mathrm{~cm}$
$=346 \mathrm{~cm}^{2}$

Answer: $\frac{1}{2} b \times h=\frac{1}{2}(3,5 \mathrm{~cm}) \times 1,5 \mathrm{~cm}=2,625 \mathrm{~cm}^{2}$

## 55 Area conversion

Topic: Size, area and perimeter of 2-D shapes Content links: R12, 52-54 Grade 8 links: R14, 82-86 Grade 9 links: R14, 60-64

## Objectives

- Calculate to at least 1 decimal place
- Use and convert between appropriate International System of Units (SI units) including:
$-\mathrm{mm}^{2} \longleftrightarrow \mathrm{~cm}^{2}$
$-\mathrm{cm}^{2} \longleftrightarrow \mathrm{~m}^{2}$
- Solve problems, with or without a calculator involving perimeter and area of polygons


## Dictionary

Convert: To change a value or measurement from one system of units
to another.
Convert between SI units: $\mathrm{cm}^{2} \longleftrightarrow \mathrm{~m}^{2}$
$100 \mathrm{~cm}=1 \mathrm{~m}$
$100 \mathrm{~cm} \times 100 \mathrm{~cm}=1 \mathrm{~m} \times 1 \mathrm{~m}$
$10000 \mathrm{~cm}^{2}=1 \mathrm{~m}^{2}$
Convert between SI units: $\mathrm{mm}^{2} \longleftrightarrow \mathrm{~cm}^{2}$ :
$10 \mathrm{~mm}=1 \mathrm{~cm}$
$10 \mathrm{~mm} \times 10 \mathrm{~mm}=1 \mathrm{~cm} \times 1 \mathrm{~cm}$
$100 \mathrm{~mm}^{2}=1 \mathrm{~cm}^{2}$
Convert between SI units: $\mathbf{m}^{2} \longleftrightarrow \mathbf{k m}^{2}$ :
1000 m = 1 km
$1000 \mathrm{~m} \times 1000 \mathrm{~m}=1 \mathrm{~km} \times 1 \mathrm{~km}$
$1000000 \mathrm{~m}^{2}=1 \mathrm{~km}^{2}$

$\begin{aligned} & \text { b. } l \times b \\ & =3 \mathrm{~m} \times 1,5 \mathrm{~m} \\ & =4,5 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & l \times b \\ & =300 \mathrm{~cm} \times 150 \mathrm{~cm} \\ & =45000 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & l \times b \\ & =3000 \mathrm{~mm} \times 1500 \mathrm{~mm} \\ & =4500000 \mathrm{~mm}^{2} \end{aligned}$
$\begin{aligned} & \text { c. } l \times b \\ & =6 \mathrm{~m} \times 3,2 \mathrm{~m} \\ & =19,2 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & l \times b \\ & =600 \mathrm{~cm} \times 320 \mathrm{~cm} \\ & =192000 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & l \times b \\ & =6000 \mathrm{~mm} \times 3200 \mathrm{~mm} \\ & =19200000 \mathrm{~mm}^{2} \end{aligned}$
$\begin{aligned} & \text { d. } l \times b \\ & =4,5 \mathrm{~m} \times 2,1 \mathrm{~m} \\ & =9,45 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & l \times b \\ & =450 \mathrm{~cm} \times 210 \mathrm{~cm} \\ & =94500 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & l \times b \\ & =4500 \mathrm{~mm} \times 2100 \mathrm{~mm} \\ & =9450000 \mathrm{~mm}^{2} \end{aligned}$
$\begin{aligned} & \text { e. } l \times b \\ & =7,2 \mathrm{~m} \times 5 \mathrm{~m} \\ & =36 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & l \times b \\ & =720 \mathrm{~cm} \times 500 \mathrm{~cm} \\ & =360000 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & l \times b \\ & =7200 \mathrm{~mm} \times 5000 \mathrm{~mm} \\ & =36000000 \mathrm{~mm}^{2} \end{aligned}$



Rellection questions
Did learners meet the objectives?

## 56 Understanding the volume of cubes

## Objectives

- Use appropriate formulae to calculate the surface area, volume and capacity of cubes
- Solve problems including volume


## Dictionary

Volume: Volume is the measure of the amount of space within or occupied by a solid figure. It is the space actually occupied by an object or some substance.

Capacity: Capacity is a containing space. It is amount of room available to hold something. So if a bottle has the capacity of 1 litre you will need a volume of 1 litre of water to fill it.

## Introduction

Ask the learners to look at the pictures and answer the following questions:

- How many containers are on the truck? (216)
- How did you work it out? (Length $\times$ width $\times$ height)
- Is their a quicker way of working it out? Explain it.

Slower way
$36+36+36+36+36+36=216$
Faster way
$6 \times 6 \times 6$
$=36 \times 6$
$=216$


Label the diagram. Count the cubes. Write the number of cubes in exponential form.

## Example



Answers:
a. $l \times b \times h$
$=4 \times 4 \times 4$
$=4 \mathrm{~m} \times 4 \mathrm{~m} \times 4 \mathrm{~m}$
$=64 \mathrm{~m}^{3}$

b. $l \times b \times h$
$=3 \times 3 \times 4$
$=3 \mathrm{~m} \times 3 \mathrm{~m} \times 4 \mathrm{~m}$ $=36 \mathrm{~m}^{2}$


## 56 Understanding the volume of cubes cont...



Write down a sum in exponential form for each diagram and then calculate the total number of cubes used

## Example:

2 cubes $^{3}+5$ cubes $^{3}$
$=8$ cubes +125 cubes
= 133 cubes


Answers:
a. $4 \mathrm{~cm}^{3}+2 \mathrm{~cm}^{3}$
$=64$ cubes +8 cubes
$=72$ cubes
b. $3 \mathrm{~cm}^{3}+3 \mathrm{~cm}^{3}+3 \mathrm{~cm}^{3}$
$=27$ cubes +27 cubes +27 cubes
$=81$ cubes
Calculate the volume of the buildings. Show your calculations. Answers:
a. $5^{3}+4^{3}$
$=125+64$
$=189$ units
b. $4^{3}+4^{3}+2^{3}+2^{3}$ $=64+64+8+8$ $=144$ units
d. $2^{3}+2^{3}+2^{3}+2^{3}$
$=8+8+8+8$
$=32$ units
e. $5^{3}+5^{3}$ $=125+125$ $=250$ units
c. $4^{3}+3^{3}+2^{3}$ $=64+27+8$ $=99$ units


## 57 Volume of cubes

Topic: Size, surface area and volume of 3-D objects Content links: R12, R14, 56, 58-64 Grade 8 links: R15, 87-91 Grade 9 links: R15, 100

## Objectives

- Use and convert between appropriate SI Units including: $\mathrm{mm}^{3} \leftrightarrow \mathrm{~cm}^{3}, \mathrm{~mm}^{2} \leftrightarrow \mathrm{~cm}^{2}, \mathrm{~cm}^{2} \leftrightarrow \mathrm{~m}^{2}$
- Use appropriate formulae to calculate the area, volume and capacity of cubes


## Dictionary

Volume: Volume is the measure of the amount of space inside of a solid figure.
Volume of a cube: $V=$ length $x$ length $x$ height or area $x$ height
Capacity: Capacity is the amount of space within a container.

## Introduction

128
Ask the leaners what the difference between volume and capacity is. They should use the picture to support their answer.

## What is the difference between volume and capacity?


$10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$
$=1000 \mathrm{~cm}^{3}$
$=1000 \mathrm{ml}$
$=1 \ell$

## 57 Volume of cubes cont...

Use the example to guide you in completing these volume calculations for these cubes:

Answers:

a. 4 m	b. 3 m
$4 \mathrm{~m} \times 4 \mathrm{~m} \times 4 \mathrm{~m}$	$3 \mathrm{~m} \times 3 \mathrm{~m} \times 3 \mathrm{~m}$
$64 \mathrm{~m}^{3}$	$27 \mathrm{~m}^{3}$
400 cm	300 cm
$400 \mathrm{~cm} \times 400 \mathrm{~cm} \times 400 \mathrm{~cm}$	$300 \mathrm{~cm} \times 300 \mathrm{~cm} \times 300 \mathrm{~cm}$
$64000000 \mathrm{~cm}^{3}$	$27000000 \mathrm{~cm}^{3}$
4000 mm	3000 mm
$4000 \mathrm{~mm} \times 4000 \mathrm{~mm} \times 4000 \mathrm{~mm}$	$3000 \mathrm{~mm} \times 3000 \mathrm{~mm} \times 3000 \mathrm{~mm}$
$64000000000 \mathrm{~mm}^{3}$	$27000000000 \mathrm{~mm}^{3}$
c. 5 m	d. 1 m
$5 \mathrm{~m} \times 5 \mathrm{~m} \times 5 \mathrm{~m}$	$1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$
$125 \mathrm{~m}^{3}$	$1 \mathrm{~m}^{3}$
500 cm	100 cm
$500 \mathrm{~cm} \times 500 \mathrm{~cm} \times 500 \mathrm{~cm}$	$100 \mathrm{~cm} \times 100 \mathrm{~cm}^{2} \times 100 \mathrm{~cm}$
$125000000 \mathrm{~cm}^{3}$	$1000000 \mathrm{~cm}^{3}$
5000 mm	1000 mm
$5000 \mathrm{~mm} \times 5000 \mathrm{~mm}^{2} \times 5000 \mathrm{~mm}$	$1000 \mathrm{~mm} \times 1000 \mathrm{~mm} \times 5000 \mathrm{~mm}$
$125000000000 \mathrm{~mm}^{3}$	$1000000000 \mathrm{~mm}^{3}$

Look at the example showing how to calculate the dimensions of a cube with a particular volume. Rewrite all the volumes below showing the dimensions of the cubes in $\mathrm{mm}, \mathrm{cm}$ and m . Answers:
a. $216 \mathrm{~m}^{3}=6 \mathrm{~m} \times 6 \mathrm{~m} \times 6 \mathrm{~m}$
$216000000 \mathrm{~cm}^{3}=600 \mathrm{~cm} \times 600 \mathrm{~cm} \times 600 \mathrm{~cm}$
$216000000000 \mathrm{~mm}^{3}=6000 \mathrm{~mm} \times 6000 \mathrm{~mm} \times 6000 \mathrm{~mm}$
b. $343000000000 \mathrm{~mm}^{3}=7000 \mathrm{~mm} \times 7000 \mathrm{~mm} \times 7000 \mathrm{~mm}$ $343000000 \mathrm{~cm}^{3}=700 \mathrm{~cm} \times 700 \mathrm{~cm} \times 700 \mathrm{~cm}$ $343 \mathrm{~m}^{3}=7 \mathrm{~m} \times 7 \mathrm{~m} \times 6 \mathrm{~m}$
c. $512000000 \mathrm{~cm}^{3}=800 \mathrm{~cm} \times 800 \mathrm{~cm} \times 800 \mathrm{~cm}$ $512000000000 \mathrm{~mm}^{3}=8000 \mathrm{~mm} \times 8000 \mathrm{~mm} \times 8000 \mathrm{~mm}$ $512 \mathrm{~m}^{3}=8 \mathrm{~m} \times 8 \mathrm{~m} \times 8 \mathrm{~m}$
d. $125000000 \mathrm{~mm}^{3}=5000 \mathrm{~mm} \times 5000 \mathrm{~mm} \times 5000 \mathrm{~mm}$ $125 \mathrm{~m}^{3}=5 \mathrm{~m} \times 5 \mathrm{~m} \times 5 \mathrm{~m}$
$\quad$ Problem solving
$\begin{aligned} & \text { a.If the volume of a cube is } 125 \mathrm{~cm}{ }^{3} \text {, what ore its dimensions in } m \text { and } \mathrm{m} \text { ? } \\ & \text { b. Witha family member think of five everyday objects that are cubes. }\end{aligned}$
Answer:
a. $125 \mathrm{~cm}^{3}$
$=5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$
$=50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 50 \mathrm{~mm}$
$=0,05 \mathrm{~m} \times 0,05 \mathrm{~m} \times 0,05 \mathrm{~m}$

## 58 Volume of rectangular prisms

## Objectives

- Use appropriate formulae to calculate the surface area, volume of rectangular prisms
- Solve problems involving volume


## Dictionary

Volume: Volume is the measure of the amount of space inside of a solid figure.

How many cubes are in the large container?


## Introduction

Ask the learners to look at the pictures and answer the following questions:

- How many cubes are in the container? (210)
- How did you work it out? (Multiplying length by width by height: $6 \times 5 \times 7=210)$
- Is there a quicker way of working it out? Explain it.


## 58 Volume of rectangular prisms continued



## 59 Volume of rectangular prisms again

## Objectives

- Use and convert between appropriate SI Units including:

Calculate the volume of the following and give your answer in $\mathrm{m}^{3}, \mathrm{~cm}^{3}$ and $\mathrm{mm}^{3}$. Also say what the capacity of each

- Solve problems involving volume


## Dictionary

Volume: Volume is the measure of the amount of space inside of a solid figure.
Volume of a cube: $V=$ length $x$ length $x$ height or area $x$ height
Capacity: Capacity is the amount of space or a substance a container can hold.

Introduction
134
Ask the learners how many small cubes ( $1 \mathrm{~m} \times 1 \mathrm{~m}$ ) will fit into the rectangular prism ( $1 \mathrm{~m} \times 2 \mathrm{~m} \times 4 \mathrm{~m}$ ) $8 \mathrm{~m}^{3}$.

How many small containers will fit in the large container? How did you work it out? Why do we know the large container can hold 8000 litres?

container is when filled with water.

b. $\mathrm{m}^{3}: l \times b \times h$
$=2 \mathrm{~m} \times 1 \mathrm{~m} \times 9 \mathrm{~m}=18 \mathrm{~m}^{3}$
$\mathrm{cm}^{3}: l \times b \times h$
$=200 \mathrm{~cm} \times 100 \mathrm{~cm} \times 900 \mathrm{~cm}=18000000 \mathrm{~cm}^{3}$
$\mathrm{mm}^{3}: l \times b \times h$
$=2000 \mathrm{~mm} \times 1000 \mathrm{~mm} \times 9000 \mathrm{~mm}=18000000000 \mathrm{~mm}^{3}$

## 59 Volume of rectangular prisms again cont...

```
c. m}\mp@subsup{\textrm{m}}{}{3}:l\timesb\times
 =2 m}\times2\textrm{m}\times5\textrm{m}=20\mp@subsup{\textrm{m}}{}{3
 cm}\mp@subsup{}{}{3}:l\timesb\times
 =200 cm }\times200\textrm{cm}\times500\textrm{cm}=20000000\mp@subsup{\textrm{cm}}{}{3
 mm}\mp@subsup{}{}{3}:l\timesb\times
 =2000 mm ×2000 mm × 5000 mm = 20000000000 mm
d. m}\mp@subsup{}{}{3}:l\timesb\times
 =9m\times3m\times5m=135 m
 cm}\mp@subsup{}{}{3}:l\timesb\times
 =900 cm \times 300 cm \times 500 cm = 135000000 cm}\mp@subsup{}{}{3
 mm}\mp@subsup{}{}{3}:l\timesb\times
 =9000 mm × 3000 mm \times 5000 mm = 135000000000 mm
e. m}\mp@subsup{\textrm{m}}{}{3}:l\timesb\times
 =2m\times2 m\times7m=28 m
 cm}\mp@subsup{}{}{3}:l\timesb\times
 =200 cm \times 200 cm \times 700 cm = 28000000 cm 3
 mm}\mp@subsup{}{}{3}:l\timesb\times
 =2000 mm ×2000 mm \times 7 000 mm = 28000 000000 mm
f. m}\mp@subsup{}{}{3}:l\timesb\times
 =4m\times2 m\times6 m=48 m
 cm}\mp@subsup{}{}{3}:l\timesb\times
 =400 ccm }\times200\textrm{cm}\times600\textrm{cm}=48000000\mp@subsup{\textrm{cm}}{}{3
 mm}\mp@subsup{}{}{3}:l\timesb\times
 =4000 mm ×2000 mm × 6000 mm = 48000000000 mm
```


## 60 Volume problems

Topic: Size, surface area and volume of 3-D objects Content links: R12, R14, 56-60, 62-64 Grade 8 links: R15, 87-91 Grade 9 links: R15, 100-104

## Objectives

- Solve appropriate problems involving surface area, volume and capacity.


## Dictionary

Word problem: A mathematical activity where background or context of the problem is presented as text or narrative story rather than as a mathematical notation.
Volume: Volume is the measure of the amount of space inside of a solid figure
Volume of a cube: $V=$ length $x$ length $x$ height or area $x$ height Volume of a rectangular prism: $V=$ length $x$ breadth $x$ height
Capacity: Capacity is a containing space. It is amount of room available to hold something in a container.

## Introduction

136
Ask the learners to read the comic strip. Ask them why problem solving is such important skill in day-to-day life. Write learners answers on the board and summarise it for them.


Calculate the volume (in cubic centimetres) of a rectangular prism that is 5 m long, 40 cm wide and 2500 mm high. Make a drawing.
Answers:
$5 \mathrm{~m}=500 \mathrm{~cm}$
a. $(l \times b \times h)$
$40 \mathrm{~cm}=40 \mathrm{~cm}$
$2500 \mathrm{~mm}=250 \mathrm{~cm}$
$=5000000 \mathrm{~cm}$


## 10 Topic: Size, surface area and volume of 3-D objects Content links: R12, R14, 56-60, $62-64$

A swimming pool is 8 m long, 6 m wide and $1,5 \mathrm{~m}$ deep. The water resistant paint needed for the pool costs R50 per square meter.
Answers:
a. Inside surface area:
$2 \times(8 \mathrm{~m} \times 1,5 \mathrm{~m})+2 \times(6 \mathrm{~m} \times 1,5 \mathrm{~m})+1 \times(8 \mathrm{~m} \times 6 \mathrm{~m})$
$=\left(2 \times 12 \mathrm{~m}^{2}\right)+\left(2 \times 9 \mathrm{~m}^{2}\right)+48 \mathrm{~m}^{2}=24 \mathrm{~m}^{2}+18 \mathrm{~m}^{2}+48 \mathrm{~m}^{2}$
$=90 \mathrm{~m}^{2}$
Cost: $90 \times \mathrm{R} 50=\mathrm{R} 450$
b. Volume water:
$8 \mathrm{~m} \times 6 \mathrm{~m} \times 1,5 \mathrm{~m}=72 \mathrm{~m}^{3}=72000$ litres
At a factory they are trying to store boxes in a storage room with a length of 5 m , width of 3 m and height of 2 m . How many boxes can fit in this space if each box is 10 cm long, 6 cm wide and 4 cm high? Answers:

## Storage <br> Boxes

$l \times b \times h$
$l \times b \times h$
$=5 m \times 3 m \times 2 m$
$=(10 \mathrm{~cm} \times 6 \mathrm{~cm}) \times 4 \mathrm{~cm}$
$=30 \mathrm{~m}^{3}$
$=240 \mathrm{~cm}^{3}$
$\therefore 500 \mathrm{~cm} \times 300 \mathrm{~cm} \times 200 \mathrm{~cm}$
$=30000000 \mathrm{~cm}^{3}$
$=30000000 \mathrm{~cm}^{3} \div 240 \mathrm{~cm}^{2}$
$=125000$ boxes
The boxes fit exactly as the length, width and height of the box divides exactly into the length, width and height of the storage room (50 times

Solve this with a family member or members.   Assume we each create a cube of $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$   of waste per day.   -We have a classroom with dimensions of $5,1 \mathrm{~m} \times 4,5 \mathrm{~m} . \times 3 \mathrm{~m}$.   - We are 30 children in the class.   How long will we take to fill the class with waste?

## Answer:

Waste
$l \times b \times h$
$=30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$
$=27000 \mathrm{~cm}^{3}$ per child per day
$\therefore 27000 \mathrm{~cm}$ per child $\times 30$ children
$=810000 \mathrm{~cm}^{3}$ per class per day
Classroom:
$l \times b \times h$
$=5,1 \mathrm{~m} \times 4,5 \mathrm{~m} \times 3 \mathrm{~m}$
$=68,85 \mathrm{~m}^{3}$
$\therefore 68,85 \mathrm{~m}^{3} \times 1000000 \mathrm{~cm}=68850000 \mathrm{~cm}^{3}$
$\therefore 68850000 \mathrm{~cm}^{3} \div 810000 \mathrm{~cm}^{3}$
85 days to fill the class

## Rellection questions

Did learners meet the objectives?

## 61 Volume and capacity

## Objectives

- Solve problems involving surface area, volume and capacity
- Use appropriate formulae to calculate the surface area of a cube


## Dictionary

Volume: Volume is the measure of the amount of space inside of a solid figure. It is the space actually occupied by an object or some substance.

Capacity: Capacity is a containing space. It is amount of room available to hold something

## Introduction

138
Ask the learners to look at the picture: This person needs to collect information, what do you notice? A person thinking searching on a computer, searching in a library, reading a book, having a lot of resources around him or her, talking to his or her teacher and holding his or her maths workbook.

This person needs to collect information. What do you notice?


## 62 Surface area of a cube

## Objectives

- Solve appropriate problems involving surface area, volume and capacity
- Use appropriate formulae to calculate the surface area of a cube


## Dictionary

Surface area: The total area of the surface of a geometric object.
Formula: The surface area of a prism = the sum of the area of all its
faces.
Formula for the surface area of a cube: $=$ length ${ }^{2} \times$ total faces

## Introduction

140
Ask the learners to look at the three pictures, and ask them what do they see?

- a cube
- a cube unfolded
- the net of a cube



## 62 Surface area of a cube continued



## 63 Surface area of rectangular prisms

## Objectives

- Solve appropriate problems involving surface area, volume and capacity.
- Use appropriate formulae to calculate the surface area of a rectangular prism


## Dictionary

Surface area: The total area of the surface of a geometric object. Formula: The surface area of a prism = the sum of the area of all its faces.

Formula for the surface area of a rectangular prism $=(2 \times$ Length $\times$ Width $)+(2 \times$ Length $\times$ Height $)$
$+2 \times$ Width $\times$ Height)


142

## Introduction

Ask the learners to look at the three pictures, and ask them what do they see?

- a rectangular prism,
- a rectangular prism slightly unfolded and,
- net of a rectangular prism.

Revision: Calculate the volume of these cubes. Answers:

| $\mathbf{c m}$ | $\mathbf{c m}^{3}$ | $\mathbf{m m}^{3}$ | Make a <br> drawing of the <br> net. Describe <br> in words the <br> geometric <br> figures (2-d <br> shapes in the <br> net. |
| :--- | :--- | :--- | :--- | :--- |
| $l \times w \times h$ <br> $1 \mathrm{~cm}^{2} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}$ <br> $=6 \mathrm{~cm}^{3}$ | 6 | 6000 |  |
| $l \times w \times h$ <br> $2,5 \mathrm{~cm} \times 3 \mathrm{~cm} \times 1,5 \mathrm{~cm}$ <br> $=11,25 \mathrm{~cm}^{3}$ | 11,25 | 11250 |  |

## 63 Surface area of rectangular prisms cont...



c. $6 \mathrm{~cm} \times 4,5 \mathrm{~cm}=27 \mathrm{~cm}^{2}$	d. $4 \mathrm{~cm} \times 1,8 \mathrm{~cm}=7,2 \mathrm{~cm}^{2}$
$2 \times 27 \mathrm{~cm}^{2}=54 \mathrm{~cm}^{2}$	$2 \times 7,2 \mathrm{~cm}^{2}=14,4 \mathrm{~cm}^{2}$
$4,5 \mathrm{~cm} \times 3,7 \mathrm{~cm}=16,65 \mathrm{~cm}^{2}$	$1,8 \mathrm{~cm} \times 2,3 \mathrm{~cm}=4,14 \mathrm{~cm}^{2}$
$2 \times 16,65 \mathrm{~cm}^{2}=33,30 \mathrm{~cm}^{2}$	$2 \times 4,14 \mathrm{~cm}^{2}=8,28 \mathrm{~cm}^{2}$
$6 \mathrm{~cm} \times 3,7 \mathrm{~cm}=22,2 \mathrm{~cm}^{2}$	$4 \mathrm{~cm} \times 2,3 \mathrm{~cm}=9,2 \mathrm{~cm}^{2}$
$2 \times 22,2 \mathrm{~cm}^{2}=44,4 \mathrm{~cm}^{2}$	$2 \times 9,2 \mathrm{~cm}^{2}=18,4 \mathrm{~cm}^{2}$
$\begin{aligned} & 54 \mathrm{~cm}^{2}+33,30 \mathrm{~cm}^{2}+44,4 \mathrm{~cm}^{2} \\ & =131,70 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & 41,4 \mathrm{~cm}^{2}+8,28 \mathrm{~cm}^{2}+18,4 \mathrm{~cm}^{2} \\ & =41,08 \mathrm{~cm}^{2} \end{aligned}$
Problem solving	
If the surface area of a rectangular prism is $52 \mathrm{~cm}^{2}$, what could its dimensions be?	
Answer:	
$2 l w+2 l h+2 w h=52 \mathrm{~cm}^{2}$	
$2(l w+l h+w h)=52$	
$l w+l h+w h=\underline{52}=26$	
Let $l=3$ and $w=2$.	
Then $(3 \times 2)+(3 \times h)+(2 \times h)=26$	
$6+3 h+2 h=26$	
$6+5 h=26$	
$h=4$	
So possible dimensions are length $=3 \mathrm{~cm}$, width $=2 \mathrm{~cm}$ and height $=4 \mathrm{~cm}$. Test: $2(3 \times 2)+2(3 \times 4)+2(2 \times 4)=12+24+16=52$	

## 64 Surface area problem solving

## Objectives

- Solve appropriate involving surface area, volume and capacity.


## Dictionary

Surface area: The total area of the surface of a geometric object. Formula: The surface area of a prism = the sum of the area of all its faces.

## Introduction

144
Discuss with your learners how you will solve a problem. Write the keywords on the board. Go through this with your learners.

Before solving the problems, make notes on how you will solve a problem.
$\square$ Revise the formulas for surface area. Write them down.
Cube: $\qquad$

Rectangular prism:

$\square$

How many square tiles ( $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ ) are needed to cover the sides and base of a pool that is 10 m long, 6 m wide and 3 m deep?
Answers:
a. They want to tile a swimming pool (inside surface)
b. That the amount of tiles depends on the area of the pool.
c. What the area of the tile is, and the surface area of the pool sides and base.
d. 54 tiles are needed to tile the swimming pool.

Swimming pool:
Bottom
$10 \mathrm{~m} \times 6 \mathrm{~m}$
$=60 \mathrm{~m}^{2}$

Total area $=60 \mathrm{~m}^{2}+96 \mathrm{~m}^{2}$

$$
=156 \mathrm{~m}^{2}
$$

Tiles: $20 \mathrm{~cm} \times 20 \mathrm{~cm}=400 \mathrm{~cm}^{2}$
$\therefore$ The total area of the pool is
$\frac{\left(156 \mathrm{~m}^{2}\right)}{\left(400 \mathrm{~cm}^{2}\right)}=\frac{1560000 \mathrm{~cm}^{3}}{}$
$\frac{\left(400 \mathrm{~cm}^{2}\right)}{400 \mathrm{~cm}^{3}}$
$=3900$ tiles

## 64 Surface area problem solving cont...

Four cubes of ice with side lengths of 4 cm each are left to melt in a square box with sides 8 cm long. How high will the water rise when all of them have melted?

What is this problem all about?
Calculating the total volume of some solid cubes and working out how much of a solid square base container that volume will fill.

## What do I know? <br> How to calculate the volume of a cube and how to calculate the area of a square.

145	You are a great problem solver Share with a familem member why you are a great problem solver. Why is   maths heling you to become such a problem solver?
Reflection questions	
Did learners meet the objectives?	

What do I need to know more about?
The formulae are given.
Tackle the problem:
The volume of the four cubes of ice:
$4 \times(4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm})=256 \mathrm{~cm}^{3}$
The area of the square base of the box:
$8 \mathrm{~cm} \times 8 \mathrm{~cm}=64 \mathrm{~cm}^{2}$
Height water will rise to: $\frac{256}{64} \mathrm{~cm}=4 \mathrm{~cm}$

Teacher's notes

## Grade 7 Book 2

## Malhemalics

Teacher Guide

## Contents Grade 7 Book 2

No.	Title		Pg.	92	Enlargement and reduction	221	62	119	More input and output values	276	122
65	Numeric patterns: constant difference	167	2	93	More enlargement and reduction	223	64	120	Algebraic expressions	278	124
66	Numeric patterns: constant ratio	169	4	94	Enlargements and reductions	225	66	121	The rule as an expression	280	126
67	Numeric patterns: neither a constant difference nor a	171	6	95	Prisms and pyramids	227	68	122	Sequences and algebraic expressions	282	128
				96	3-D objects	229	70	123	The algebraic equation	284	130
68	Numeric patterns: tables	173 175	8	97	Building 3-D models	231	72	124	More on the algebracic equation	286	132
69	Number sequences and words	175	12	98	Visualising 3-D objects/playing a game	233	74	125	More algebraic equations	288	134
70	Geometric number patterns	177	12	99	Faces, vertices and edges	235	76	126	Data collection	291	136
71	Numeric patterns: describe a pattern	179	14	100	More faces, vertices and edges	237	78	127	Organise data	293	140
72	Input and output values	181 183	18	101	Even more faces, vertices and edges	239	80	128	Summarise data	295	144
73	Functions and relationships	183	20	102	Views	241	82	129	Bar graphs	297	148
74	Algebraic expressions and equations	185	22	103	Constructing a pyramid net	243	86	130	Double bar graphs	299	152
75	Algebraic expressions	187	24	104	Construct a net of a prism	245	88	131	Double bar graphs	301	
76	More algebraic expressions	189	26	105	Integers	247	90	131	Histograms	301	156
77	Algebraic equations	191	28	106	Moge integers	249	92	132	More about histograms	303	160
78	More algebraic equations	193	30	107	Calculate integers	241	94	133	Pie charts	305	164
79	Algebraic equations in context	195	32	108	Integer operations	253	96	134	Report data	307	166
80	Interpreting graphs: temperature and time graphs	197	34	109	Adding and subtracting integers	255	98	135	Data handling cycle	309	170
81	Interpreting graphs: rainfall and time graphs	199	38	IIO	Integer calculations	257	100	136	Data handling cycle (continued)	311	172
82	Interpreting graphs: time and distance	201	40	III	Commutative property and integers	259	102	137	Possible outcomes	313	174
83	Drawing more graphs	203	42	II2	Associative property and integers	261	104	138	Definition of probability	315	176
84	Drawing graphs again	205	46	113	Integers: distributive property and integers	263	106	139	Relative frequency	317	178
85	Drawing even more graphs	207	48	114	Number patterns: constant difference and ratio	265	108	140	Probability and relative frequency	319	180
86	Transformations	209	50	115	Number patterns: neither a constant differerence nor a	267	110	1419	Revision: number, operations and relationships	321	182
87	Rotation	211	52		constant ratio			1416	Revision: patterns, functions and algebra	322	184
88	Translation	213	54	116	Number sequences and words	269	112	142	Revision: shape and space (geometry)	323	186
89	Reflection and reflective symmetry	215	56	117	Number sequences: describe a pattern	271	114	143	Revision: measurement	324	188
90	Transformations again	217	58	$118{ }^{\text {a }}$	Input and output values	273	118	144	Revision: data handling	325	190
91	Investigation	219	60								

## 65 Numeric patterns: constant difference

## Objectives

- Investigate and extend numeric and geometric patterns looking for relationships between numbers, including patterns in physical or diagrammatic form with or without a constant difference


## Dictionary

Numeric pattern: a list of numbers that follow a certain sequence or pattern, e.g.: $3,6,9,12,15, \ldots$ (starts at 3 and adds 3 every time) Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: $2,4,8,16,32,64,128,256$, (starts at 2 and each following term is 2 times the term before) Constant Difference: an equal difference between terms in a sequence e.g.: $2,4,6,8, \ldots$ (the constant difference added each time is 2 )

## Introduction

2
Discuss the patterns with the learners. Tell the learners that we describe patterns by using words like "adding" and "subtracting" or "multiplying by" a certain value.

Describe the patterns involving adding and subtraction shown in the number line below.


Describe each pattern.
Answers: a


1. Adding 3: 22, 25, 28
2. Adding 5: 30, 35, 40
3. Subtracting 4: $39,35,31,27,23$
b.

4. Adding 1: $35,36,37,38,39$
5. Adding 5: 55, 50, 45
6. Adding 6: 36, 42, 48, 54
c.

7. Adding 7: 101, 108, 115
8. Adding 5: 102, 107, 112, 117

## 65 Numeric patterns: constant difference continued




Describe the rule for each pattern.
Answers:
a. $6,14,22,30$

$$
\text { Adding } 8
$$

Counting in 8s
c. $13,10,7,4,1$ Subtracting 3 Counting in -3 s
e. $5,9,13,17,21$ Adding 4 Counting in 4 s
g. $7,18,29,40,51$ Adding 11
Counting in 11 s
i. $4,5,6,7,8$ Adding 1 Counting in 1s
b. $2,6,10,14,18$ Adding 4 Counting in 4 s
d. $8,13,18,23,28$ Adding 5 Counting in 5 s
f. $-20,-15,-10,-5,0$ Adding 5 Counting in 5 s
h. $1,9,17,25,33$ Adding 8 Counting in 8 s
j. $-6,-4,-2,0,2$ Adding 2 Counting in 2 s

Answer: 35, 46, 57, 68, 79, 90, 101, 112, 123

## 66 Numeric patterns: constant ratio

## Objectives

- Investigate and extend numeric and geometric patterns looking for relationships between numbers, including patterns represented in diagrammatic form not limited to constant difference or ratio


## Dictionary

Numeric pattern: a list of numbers that follow a certain sequence or pattern, e.g.: $3,6,9,12,15, \ldots$ (starts at 3 and adds 3 every time) Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: $2,4,8,16,32,64,128,256$,
.. (starts at 2 and each following term is 2 times the term before)
Constant Ratio: the value of the ratio between each pair of numbers in a sequence remains the same - constant, e.g. as in the geometrical sequence: $2,4,8,16$, the ratio $2: 4=4: 8=8: 16$ is constant

## Introduction

4



Describe the pattern
Example: 8, 32, 128,512

## Term 1: 8

Term 2: $32=8 \times 4$ Term 3: $128=32 \times 4$ Term 4: $512=128 \times 4$

Answers:
a. Term 1: 2

Multiply the previous term by 4
Term 2: $2 \times 4=8$
Term 3: $8 \times 4=32$
Term 4: $32 \times 4=128$
Term 5: $128 \times 4=512$
b. Term 1: 4

Multiply the previous term by 3 .
Term 2: $4 \times 3=12$
Term 3: $12 \times 3=36$
Term 4: $36 \times 3=108$
Term 5: $108 \times 3=324$
c. Term 1: 6

Term 2: $6 \times 2=12$
Term 3: $12 \times 2=24$
Term 4: $24 \times 2=48$
Term 5: $48 \times 2=96$

## 66 Numeric patterns: constant ratio continued

d. Term 1: 8

Term 2: $8 \times 5=40$
Term 3: $40 \times 5=200$
Term 4: $200 \times 5=1000$
Term 5: $1000 \times 5=5000$
e. Term 1: 1

Term 2: $1 \times 6=6$
Term 3: $6 \times 6=36$
Term 4: $36 \times 6=216$
Term 5: $216 \times 6=1296$
f. Term 1: 3

Term 2: $3 \times 3=9$
Term 3: $9 \times 3=27$
Term 4: $27 \times 3=81$
Term 5: $81 \times 3=243$
g. Term 1: 5

Term 2: $5 \times 4=20$
Term 3: $20 \times 4=80$
Term 4: $80 \times 4=320$
Term 5: $320 \times 4=1280$

Multiply the previous term by 5 .

Multiply the previous term by 6 .

Multiply the previous term by 3 .

Multiply the previous term by 4.
h. Term 1: 7

Multiply the previous term by 6 .
Term 2: $7 \times 6=42$
Term 3: $42 \times 6=252$
Term 4: $252 \times 6=1512$
i. Term 1: 9

Multiply the previous term by 5 .
Term 2: $9 \times 5=45$
Term 3: $45 \times 5=225$
Term 4: $225 \times 5=1125$
j. Term 1: 10

Multiply the previous term by 2.
Term 2: $10 \times 2=20$
Term 3: $20 \times 2=40$
Term 4: $40 \times 2=80$
Term 5: $80 \times 2=160$

Answer: ...; 104; 95; 86; 77; 68; 59; 50; 41; ...

Reflection questions
Did learners meet the objectives?

## 67 Numeric patterns: neither a constant difference nor a constant ratio

## Objectives

- Investigate and extend numeric and geometric patterns that are neither a constant difference nor a constant ratio


## Dictionary

Numeric pattern: a list of numbers that follow a certain sequence or pattern, e.g.: $3,6,9,12,15, \ldots$ (starts at 3 and adds 3 every time) Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: $2,4,8,16,32,64,128,256$, ... (starts at 2 and each following term is 2 times the term before) Constant Difference: an equal difference between terms in a sequence, e.g.: $2,4,6,8, \ldots$ (the constant difference added each time is 2 ) Constant Ratio: the value of the ratio between each pair of numbers in a sequence remains the same - constant, e.g. as in the geometrical sequence: $2,4,8,16$, the ratio $2: 4=4: 8=8: 16$ is constant

## Introduction

6
What is the difference between constant difference and ratio? - constant difference, e.g. 21, 23, 25, 27,

- constant ratio, e.g. 2, 4, 8, 16,

Describe the pattern.
1, 2, 4, 7, 11, 16,

This pattern has neither a constant difference nor a constant ratio. It can be described as "increasing the difference between consecutive terms by one each time" or "adding one more than was added to get the previous term" Answers; (Note that in some of the answers (b., g. h., and i.) the number lines have had sections of numbers shortened (...), Add in multiples of 2 , starting $\left\{\begin{array}{l}\text { at 2 (so } 2,2+2=4,4 \\ 8+6=14,14+8=22\end{array}\right.$


$$
\text { a. } 8,10,14,20,28
$$

$$
\text { Add in multiples of } 2
$$



$$
\text { b. } 15,12,6,-3,-15
$$

Subtract in multiples of 3 , starting at 15


$$
\text { c. } 3,6,10,15,21
$$

Add in multiples of 1 , starting at 3 with 3 (so $3,3+3=6,6+4=10$ and so on)

d. $10,9,7,4,0$

Subtract in multiples of 1 , starting at 10

## 67 Numeric patterns: neither a constant difference nor a constant ratio


f. $1,3,7,15,31$

Double the previous term and add 1


$$
\text { g. } 13,9,4,-2,-9
$$

Subtract multiples of 1 , starting at 13 with 4 (so $13,13-4=9$,
$9-5=4$ and so on)

h. $9,14,20,27,35$

Add $4+$ multiples of 1 , starting at 9 with 5 (so $9,9+4+1=14,14+4$ $+2=20$, and so on)

i. $24,18,13,9,6$

Subtract 6 - multiples of 1 , starting at 24 with -6 (so $24,24-6=18$, $18-6+1=13,13-6+2=9,9-6+3=6$ )

j. 19, 20, 22, 25, 29

Add multiples of 1 , starting at 19 with 1


Learner's own answer. One possible answer is $1,2,4,7,11,16$ Add multiples of 1 starting at 1

Reflection questions
Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 68 Numeric patterns: tables

## Objectives

- Investigate and extend numeric and geometric patterns looking for relationships between numbers, including patterns represented in tables and of learners' own creation.


## Dictionary

Numeric pattern: a list of numbers that follow a certain sequence or pattern, e.g.: $3,6,9,12,15, \ldots$ (starts at 3 and adds 3 every time)
Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: 4, 8, 16, 32, $64 \ldots$... (starts at 4 and each following term is 2 times the term before)

## Introduction

8
Give a rule to describe the relationship between the numbers in this sequence: $2,4,6,8, \ldots$ Use the rule to find the value of the tenth term.

Position in the   sequence	1	2	3	4		10
Value of term	2	4	6	8		$?$

The "tenth term" refers to position 10 in the number sequence. You have to find a rule in order to determine the value of the tenth term (rather than continuing the sequence up to the value of the tenth term). You should recognise that each term in the bottom row is obtained by doubling the number in the top row. So double 10 is 20 . The tenth term is 20 .

Find the value of the tenth term in each table and fill in the blank answer spaces showing how the value of each term is obtained. Answers:


## 68 Numeric patterns: tables continued

Write down the rule and find the value of the final term in the table. Answers
Example: $\quad 5,10,15,20$. Position of the term $\times 5$.

Position in the sequence	1	2	3	4		15
Term	5	10	15	20		75

a.

Position in the sequence	1	2	3	4	20	
Term	10	20	30	40		200

Position of the term $\times 10$
b.

Position in the sequence	1	2	3	4		28
Term	3	6	9	12		84

Position of the term $\times 3$


Position of the term $\times 15$
f.

Position in the sequence	1	2	3	4		50
Term	1	8	27	64		$\mathbf{1 2 5 0 0 0}$

Position of term cubed ( ${ }^{3}$ )

Thabelo is building a model house from matches. If he uses 400 matches in the first section, 550 in the
Thabelo is building a model house from matches. If he uses 400 matches in the first section, 550 in the the pattern continues? the pattern continues?

Answer:
a. $4+150=550$ $550+150=700$
$750+150=900$
900 matches
Position of the term $\times 8$
d.

Position in the sequence	1	2	3	4		100
Term	12	24	36	48		1200

## 69 Number sequences and words

## Objectives

- Investigate and extend numeric and geometric patterns looking for relationships between numbers, including learner's own patterns


## Dictionary

Numeric pattern: a list of numbers that follow a certain sequence or pattern, e.g.: 5, 10, 15, 20, ... (starts at 5 and adds 5 every time) Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: $1,2,4,8,16,32,64,128$ $256, \ldots$ (starts at 1 and each following term is 2 times the term before)


## Introduction

Look at this pattern:
4, 7, 10, 13,
If you consider only the relationship between consecutive terms, then you can continue the pattern ("adding 3 to previous number") up to the 20th term to find the answer. However, if you
look for a relationship or rule between the term and the position of the term, you can predict the look for a relationship or rule between lie lem answer without continuing the pattern. Using number sequences can be useful for finding the



Answers:
a. Number sequence: $2,5,10,17$,.. Rule: Square the position of the term, then add one $20^{\text {th }}$ term: $\quad(20) 2+1$ $=400+1$ $=401$
b. Number sequence: $-8,-6,-4,-2, \ldots$

Rule: Two multiplied by the position of the term, then subtract ten 15 th term: $(2 \times 15)-10$
$=30-10$
$=20$
c. Number sequence: $-1,2,5,8, \ldots$

Rule: Three multiplied by the position of the term, then subtract four $12^{\text {th }}$ term: $\quad(3 \times 12)-4$
$=36-4$
$=32$
d. Number sequence: $6,9,12,15$,.. Rule: Three multiplied by the position of the term, then add three $19^{\text {th }}$ term: $\quad(3 \times 19)+3$
$=57+3$
$=60$

## 69 Number sequences and words continued

e. Number sequence: $-6,-2,2,6, \ldots$

Rule: Four multiplied by the position of the term, then subtract ten $18^{\text {th }}$ term: $\quad(4 \times 18)-10$

$$
=72-10=62
$$

f. Number sequence: $7,12,17,22, \ldots$

Rule: Five multiplied by the position of the term, then add two
$12^{\text {th }}$ term: $(5 \times 12)+2$

$$
=60+2=62
$$

g. Number sequence: $2,5,3,0,3,5,4,0$,

Rule: 0,5 multiplied by the position of the term, then add two $21^{\text {th }}$ term: $\quad(0,5 \times 21)+2$

$$
=10,5+2=12,5
$$

h. Number sequence: $-3,-1,1,3$,

Rule: Two multiplied by the position of the term, then subtract five 15 ${ }^{\text {th }}$ term: $(2 \times 15)-5$

$$
=30-5=25
$$

i. Number sequence: $3,7,11,15, \ldots$

Rule: Four multiplied by the position of the term, then subtract one $14^{\text {th }}$ term: $(4 \times 14)-1$
$=56-1=55$
j. Number sequence: 14, 24, 34, 44, ...

$$
\begin{aligned}
& \text { Rule: Ten multiplied by the position of the term, then add four } \\
& \begin{array}{l}
25^{\text {th }} \text { term: }(10 \times 25)+4 \\
\quad=250+4=254
\end{array}
\end{aligned}
$$

11


## Answers:

Number sequence $4,8,16,32$,
Rule: Double the previous number
$\therefore$ Miriam will collect 64 stickers on day 5 .
Number sequence: 2, 5, 8, ...
Rule: Add three to the previous number
$\therefore$ Helen will play for 11 hours on day 4 .
Note that these problems are simple because we know the previous number, unlike in the problems in Question 1 where a more complex rule is needed to find the value of the nth position term.

## Reflection questions

Did learners meet the objectives?

## 70 Geometric number patterns

## Objectives

- Investigate and extend numeric and geometric patterns looking for relationships between numbers, including patterns in physical and diagrammatical form, tables and in different sequences.


## Dictionary

Numeric pattern: a list of numbers that follow a certain sequence or pattern, e.g.: $3,6,9,12,15, \ldots$ (starts at 3 and adds 3 every time) Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: $2,4,8,16,32,64,128,256$, (starts at 2 and each following term is 2 times the term before)
Constant Difference: an equal difference between terms in a sequence, e.g.: $2,4,6,8$,... (the constant difference added each time is 2 ) Constant Ratio: the value of the ratio between each pair of numbers in a sequence remains the same - constant, e.g. as in the geometrical sequence: $2,4,8,16$, the ratio $2: 4=4: 8=8: 16$ is constant


b. Square pattern.


Position of a square in   pattern	1	2	3	4	5	6	7
Number of matches	4	8	16	32	64	108	216

## 70 Geometric number patterns continued



## 71 Numeric patterns: describe a pattern

## Objectives

- Determine input values, output values or rules for patterns and describe and justify the general rules using formulae or in own words


## Dictionary

Input value: a number that is inputted into a diagram that determines the output value, for example:$+5=16$ where 11 is the input value

Output value: a number value that is the result of a diagram's input and process



## 71 Numeric patterns: describe a pattern continued




Answer: The pattern follows the rule $9(n)+1$
Answer: The pattern follows the rule $-9(n)+46$


Answer: $8(30)-7=240-7=233$
Reflection questions
Did learners meet the objectives?

## 72 Input values and output values

## Objectives

- Determine and interpret input, output values and rules for patterns and relationships using flow diagrams and formula


## Dictionary

Input value: a number that is inputted into a diagram that determines the output value, for example: $\square+5=16$ where 11 is the input value

Output value: a number value that is the result of a diagram's input and process


## Introduction

What do input and output mean? Make a drawing to show a real-life example.

d
Complete the flow diagrams. Answers:


Use the given rule to calculate the value of b. Answers:



## 72 Input values and output values continued



## 73 Functions and relationships

Topic: Functions and relationships Content links: 48-51, 72, 118-119 Grade 8 links: R7, 29, 110 Grade 9 links: None

## Objectives

- Determine, interpret and justify equivalence of different descriptions of the same relationship or rule presented by formulae and number sentences.
- Determine input values, output values or rules for patterns and relationships using tables.


## Dictionary

Input value: a number that is inputted into a diagram that determines the output value, for example: $\square+5=16$ where 11 is the input value

Output value: a number value that is the result of a diagram's input and process

Introduction


b. $a=b+7$

c. $m=n+4$

d. $x=z \times 2$


73 Functions and relationships
e. $y=2 x-2$

$\boldsymbol{x}$	1	2	3	4	5	6	7
$\boldsymbol{y}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$

$$
\text { f. } m=3 n+2
$$

$n$	1	5	10	20	25	100
$m$	5	17	32	62	77	302

What is the value of $m$ and $n$ ?
a.
 Problem solving

- What is the tenth term in the patierm? $(3 \times 7,4 \times 7,5 \times 7, \ldots)$
- $1 f x=2 y+9$ and $y=2,3,4,5,6$ draw a table to show the
- If $x=2 y+9$ and $y=2,3,4,5,6$ draw a t table to show the values of $x$ and $y$
b.


Answer:
a. $12 \times 7=84 \quad$ b


## 74 Algebraic expressions and equations

## Objectives

- Identify variables and constant in given formulae or equations.


Say whether it is an expression or an equation.
Example: $8+3$ (It is an expression)
$8+3=11$ (It is an equation) number form.

## Dictionary

Expressions: Input numbers that include the process but have no output. Example: $5+4$
Equations: Input numbers that have the process and include the result or output. Example: $5+4=9$
Variables: Letters that are in the place of an unknown number Example: $a+9=17 \ldots$ therefore $a=8$

## Introduction

Compare the two examples.		An equation is   a mathematical
$\mathbf{5 + 4}$	sentence that uses	
the equal sign $1=1$		

## 74 Algebraic expressions and equations continued


d. This is an expression, $1+6$. It is equal to the value on the left-hand side, $7.7=1+6$ is called an equation. The left-hand side of an equation equals the right-hand side.
e. This is an expression, $5+6$. It is equal to the value on the left-hand side, $11.11=6+5$ is called an equation. The left-hand side of an equation equals the right-hand side.
f. This is an expression, $8+9$. It is equal to the value on the righthand side, $17.8+9=17$ is called an equation. The left-hand side of an equation equals the right-hand side.

Use the variable " $a$ " to create 3 expressions of your own.
Example: $5+a$
Answers: Learners' own answers. Here are three possible answers
a. $12+a$
b. $3-a$
c. $7+a$

Say whether it is an expression or an equation.
Example: $8+a$ (It is an expression)

$$
8+a=11 \text { (It is an equation) }
$$

Answers:
a. $5+a$
Expression
b. $6+a=12$
C. $7+b=8$

What would the value of " $a$ " be in question 4 b , and 4 e ? Answer:
4b: $a=6$
4e: $a=9$


What would the value of " $b$ " be in question $4 c$ ?
Answer: 4c: $b=1$

Problem solving an equation for the following. I have 12 sweets. In total Phelo and I have 18 sweets. How many
Sweets does Phelo have?

Answer:
$12+a=18$
$a=18-12$
$=6$
Phelo has 6 sweets

## Reflection questions

Did learners meet the objectives?

## 75 Algebraic expressions

Topic: Algebraic expressions Content links: 74, 76, 120-122 Grade 8 links: R8, 29-36, 39-43 Grade 9 links: R8, 29-36, 70-80, 86-87

## Objectives

- Identify variables and constant in given formulae or equations
- Recognize and interpret rules or relationships represented in number form.


## Dictionary

Number Sequence: A list of numbers that follow a certain sequence or pattern. Example: $3,6,9,12,15, \ldots$ starts at 3 and adds 3 every time Variable: A letter that represents an unknown number value.
Example: $a+5=8$. .therefore $a=3$.

## Introduction



75 Algebraic expressions continued
Topic: Algebraic expressions Content links: 74, 76, 120-122
Grade 8 links: R8, 29-36, 39-43 Grade 9 links: R8, 29-36, 70-80, 86-87
b. 3; 5; 7; 9; 11; $\ldots$ First term: $2(1)+1$

Position in sequence	1	2	3	4	5	$n$
Value of term	3	5	7	9	11	$2(n)+1$

c. $9 ; 15 ; 21 ; 27 ; \ldots$ First term: $6(1)+3$ The n th term is $6(\mathrm{n})+3$

Position in sequence	1	2	3	4	5	$n$
Value of term	9	15	21	27	33	$6(n)+3$

What does the rule mean? Use the same values for position as in the example.
Example: The rule $2 \mathrm{n}-1$ means the following number sequence: $1,3,5,7,9 \ldots$

Position in sequence	1	2	3	4	5	$n$
Value of term	1	3	5	7	9	


	c. Rule 6n-2						
	Position in sequence	1	2	3	4	5	$n$
	Value of term	4	10	16	22	28	$6(n)-2$
	d. Rule 5n-5						
	Position in sequence	1	2	3	4	5	$n$
	Value of term	0	5	10	15	20	$5(n)-5$
	e. Rule 7n-4						
	Position in sequence	1	2	3	4	5	$n$
	Value of term	3	10	17	24	31	$7(n)-4$
25	Problem solving						
	Answer: $3 n$	olowin	Soho buil	fimes m	buzzes	I did los	holiday.
Reflection questions Did learners meet the objectives?							
Common errors   Make notes of common errors made by the learners.							

## 76 More algebraic expressions

## Objectives

- Identify variables and constant in given formulae or equations
- Recognize and interpret rules or relationships represented in number form.


## Dictionary

Number Sequence: A list of numbers that follow a certain sequence or pattern.Example: $3,6,9,12,15, \ldots$ starts at 3 and jumps 3 every time Variable: A letter that represents an unknown number value.
Example: $a+5=8$. therefore $a=3$.

## Introduction

## 26



Describe the following in words
Example: 2, 6, 10, 14, 18
Adding 4 to the previous number
Answers:
a. 3; 5; 7; 9;

Adding 2 to the previous number
d. 99;98;97:96.

Subtracting 2 from the previous number
b. $5 ; 10 ; 15 ; 20$ Adding 5 to the previous number
e. $4 ; 8 ; 12 ; 16$;

Adding 4 to the previous number
C. $21 ; 18 ; 15 ; 12 ; \ldots$ Subtracting 3 from the previous number
f. 7; 14; 21; 28; .

Adding 7 to the previous number

Describe the following sequence using an expression.
Example: 2, 6, 10, 14, 18,
$4(n)-2$ since 1 st term: 4(1) -2 ; 2nd term: 4(2) - 2; Third term 4(3) - 2; .
a. $2 ; 4 ; 6 ; 8 ; 10 ; \ldots$
b. $3 ; 5 ; 7 ; 9 ; 11 ; \ldots$

2(n) since $1^{\text {st }}$ term: $2(1)$;
$2^{\text {nd }}$ term: 2(2);
$3^{\text {rd }}$ term: 2(3); ...


If the rule is $\qquad$ , what could the sequence be? Create five possible answers for each.
Answers:
a. "Adding 7"
$1+7=8$
$2+7=9$
$3+7=10$
$4+7=11$
$5+7=12$
c. "Adding 5"
$1+5=6$
$2+5=7$
$3+5=8$
$4+5=9$
$5+5=10$
b. "Subtracting 9"
$10-9=1$
$20-9=11$
$30-9=21$
$40-9=31$
$50-9=41$
d. "Subtracting 8"
$12-8=4$
$13-8=5$
$14-8=6$
$15-8=7$


## 77 Algebraic equations

Topic: Algebraic equations Content links: 78-79, 123-125
Grade 8 links: R8, 29-44 Grade 9 links: 37-38, 72-74, 81-85

## Objectives

- Solve and complete number sentences by inspection and trial and improvement
- Analyse and interpret number sentences that describe a given situation.


## Dictionary

Variable: A letter that represents an unknown number value. Example: $a+5=8 \ldots \ldots \ldots$. therefore $a$, the variable $=3$.
Operation: Calculation by mathematical methods.

28

## Introduction



Imagine that on the right-hand side of this balance scale there are 10 objects of equal mass, and on the left-hand side there are 4 similar objects and an unknown number of other objects in a bag. The scale is balanced; therefore, we know that there must be an equal mass on each side of the scale.
Explain how you would find out how many objects there are in the bag.
Solve for $\boldsymbol{x}$.

Example: | $x+5=9$ |
| :--- |
|  |
|  |
| $x+5-5=9-5$ |
| $x=4$ |

Answers:
a. $x+12=30$
$x+12-12=30-12$
$x=18$
b. $x+8=14$
$x+8-8=14-8$
$x=6$
c. $x+17=38$
d. $x+20=55$ $x+20-20=55-20$ $x=35$
e. $x+25=30$
$x+25-25=30-25$
$x=5$
f. $x+18=26$ $x+18-18=26-18$ $x=8$

## 77 Algebraic equations continued

	Answers:   a. $\begin{aligned} & x-7=5 \\ & x-7+7=5+7 \\ & x=12 \end{aligned}$	b. $\begin{aligned} & x-3=1 \\ & x-3+3=1+3 \\ & x=4 \end{aligned}$
	c. $\begin{aligned} & x-15=12 \\ & x-15+15=12+15 \\ & x=27 \end{aligned}$	d. $\begin{aligned} & x-17=15 \\ & x-17+17=15+17 \\ & x=32 \end{aligned}$
	e. $\begin{aligned} & x-23=20 \\ & x-23+23=20+23 \\ & x=43 \end{aligned}$	$\text { f. } \begin{array}{ll} x-28=13 \\ & x-28+28=13+28 \\ & x=41 \end{array}$
	Solve for $\boldsymbol{x}$.	
	Example: $\begin{aligned} & x+4=-7 \\ & x+4-4=-7-4 \\ & x=-11 \end{aligned}$	
	Answers:   a. $\begin{aligned} & x+3=-15 \\ & x+3-3=-15-3 \\ & x=-18 \end{aligned}$	b. $\begin{aligned} & x+7=-12 \\ & x+7-7=-12-7 \\ & x=-19 \end{aligned}$
	c. $\begin{aligned} & x+2=-5 \\ & x+2-2=-5-2 \\ & x=-7 \end{aligned}$	d. $\begin{aligned} & x+5=-15 \\ & x+5-5=-15-5 \\ & x=-20 \end{aligned}$



## Objectives

- Solve and complete number sentences by inspection and trial and improvement
- Analyse and interpret number sentences that describe a given situation.


## Dictionary

Variable: A letter that represents an unknown number value.
Example: $a+5=8 \ldots \ldots \ldots .$. .therefore $a$, the variable $=3$.
Inverse Operation: An opposite method of calculation.
Example: inverse operation of adding is subtracting.


## 78 More algebraic equations continued

Topic: Algebraic equations Content links: 77, 79, 123-125
Grade 8 links: R8, 29-44 Grade 9 links: 37-38, 72-74, 81-85

Solve for $\boldsymbol{x}$. Answers:
a. $7 x-2=12$
b. $4 x-4=12$
c. $3 x-1=2$
$7 x-2+2=12+2 \quad 4 x-4+4=12+$ $7 x=14 \quad 4 x=16$ $\frac{7 x}{7}=\frac{14}{7}$
$\frac{4 x}{4}=\frac{16}{6}$
$3 x=3$
$x=2$
$x=4$

d. | $2 x-1=7$ |
| :--- |
| $2 x-1+1=7+1$ |
| $2 x=8$ |
| $\frac{2 x}{2}=\frac{8}{2}$ |
| $x=4$ |

$5 x-3+3=17+3$
$\frac{5 x}{5}=\frac{20}{5}$
$5 x-7=13$
$\begin{array}{ll}5 x=20 & 5 x-7 \\ 5 x=20\end{array}$
$\frac{5 x}{5}=\frac{20}{5}$
g. $6 x-5=25$
h. $9 x-8=82$
i. $\quad 8 x-7=49$
$6 x-5+5=25+5$
$6 x=30$
$\frac{6 x}{6}=\frac{30}{6}$
$x=5$
$9 x-8+8$
$9 x=90$
$8 x-7+7$
$8 x=56$
$\frac{9 x}{9}=\frac{90}{9}$
$\frac{8 x}{8}=\frac{56}{8}$
$x=10$
$x=7$
j. $3 x-2=16$
$3 x-2+2=16+2$
$3 x=18$
$\frac{3 x}{3}=\frac{18}{3}$
$x=6$

Problem solving	
Create an equation and solve it. How fast can you do it? Answers	
Two times $y$ equals	Sixteen times $b$

Reflection questions
Did learners meet the objectives?

## 79 Algebraic equations in context

Topic: Algebraic equations Content links: 77-78, 123-125
Grade 8 links: R8, 29-44 Grade 9 links: 37-38, 72-74, 81-85

## Objectives

- Write a number sentence to describe a problem situation
- Analyse and interpret number sentences that describe a given situation


## Dictionary

Perimeter: Distance right around an object or shape.
Area: The space an object occupies determined by multiplying two of the object's characteristics such as length and breadth.


c.$y=a^{2}+4 ; a=4$ d. $y=r^{2}+3 ; r=5$   $y=a^{2}+4$     $y=r^{2}+3$   $=(4)^{2}+4$    $=16+4$ $=(5)^{2}+3$   $=20$     $=25+3$   e. $y=p^{2}+7 ; p=6$    $y=p^{2}+7$ f. $y=c^{2}+7 ; c=7$   $=(6)^{2}+7$ $y=c^{2}+7$   $=36+7$ $=(7)^{2}+7$   $=43$ $=49+7$   $=43$	$=56$

c. $y=a^{2}+4 ; a=4$
$y=r^{2}+3$
$=25+3$
$=28$
e. $y=p^{2}+7 ; p=6$
$=(6)^{2}+7$
$=36+7$
$=43$

Calculate the following:
Example: What is the perimeter of a rectangle if the length is 2 cm and the breadth is $1,5 \mathrm{~cm}$ ? $P=21+2 b$
$P=2(2 \mathrm{~cm})+2(1,5 \mathrm{~cm})$
$\mathrm{P}=4 \mathrm{~cm}+3 \mathrm{~cm}$
$\mathrm{P}=7 \mathrm{~cm}$

## Answers:

a. The perimeter of a rectangle where the breath equals $2,2 \mathrm{~cm}$ and the length equals $2,5 \mathrm{~cm}$.
$\mathrm{P}=2 l+2 b$
$=2(2,5 \mathrm{~cm})+2(2,2 \mathrm{~cm})=9,4 \mathrm{~cm}$
b. The area of a square if the breath equals $3,5 \mathrm{~cm}$.
$A=l^{2}$
$=(3,5 \mathrm{~cm})^{2}=12,25 \mathrm{~cm}^{2}$

## 79 Alebraic equation in cont Algebraic equation in context cont...

c. The perimeter of a square if the breath equals $4,2 \mathrm{~cm}$.
$\mathrm{P}=4 l$
$=4(4,2 \mathrm{~cm})$
$=16,8 \mathrm{~cm}$
d. The area of a rectangle if the length $=3,5 \mathrm{~cm}$ and breadth $=2,5 \mathrm{~cm}$.
$\mathrm{P}=l \times b$
$=3,5 \mathrm{~cm} \times 2,5 \mathrm{~cm}$
$=8,75 \mathrm{~cm}$
e. The area of a square if the length $=5 \mathrm{~cm}$.
$\mathrm{P}=l^{2}$
$=(5 \mathrm{~cm})^{2}$
$=25 \mathrm{~cm}^{2}$
f. The perimeter of a rectangle if the breadth $=4,3 \mathrm{~cm}$ and
length $=8,2 \mathrm{~cm}$.
$\mathrm{P}=2 l+2 b$
$=2(8,2 \mathrm{~cm})+2(4,3 \mathrm{~cm})$
$=16,4 \mathrm{~cm}+8,6 \mathrm{~cm}=25 \mathrm{~cm}$
g. The perimeter of a square if the length $=2,6 \mathrm{~cm}$
$\mathrm{P}=4 l$
$=4(2,6 \mathrm{~cm})$
$=10,4 \mathrm{~cm}$
h. The perimeter of a rectangle if the breath $=8,5$ and the length $=12,4$ $\mathrm{P}=2 l+2 b$
$=2(12,4 \mathrm{~cm})+2(8,5 \mathrm{~cm})$
$=24,8 \mathrm{~cm}+17 \mathrm{~cm}$
$=41,8 \mathrm{~cm}$
i. The area of a rectangle if the breath $=10,5$ and length $=15,5$.
$A=l \times b$
$=15,5 \mathrm{~cm} \times 10,5 \mathrm{~cm}$
$=162,75 \mathrm{~cm}^{2}$
j. The perimeter of a rectangle if the breadth is $3,5 \mathrm{~cm}$ and the length is $6,7 \mathrm{~cm}$.
$\mathrm{P}=2 l+2 b$
$=2(6,7)+2(3,5)$
$=13,4+7=20,4 \mathrm{~cm}$

## Problem Solving

Write an equation and then solve it for each of these:
What is the perimeter of a rectangular swimming pool if the breadth is 12 m and the length is 16 m ? Work out the area of a square if one side is equal to $5,2 \mathrm{~cm}$.
What is the perimeter of a rectangle if the length is $5,1 \mathrm{~cm}$ and the breadth is $4,9 \mathrm{~cm}$.
Establish the area of your rectangular bedroom floor for new tiles is the length is $4,5 \mathrm{~m}$ and the breadth is
$2,8 \mathrm{~m}$.
Answers:
a. $\mathrm{P}=2 l+2 b$
$=2(16 \mathrm{~m})+2(12 \mathrm{~m})$
$=32 \mathrm{~m}+24 \mathrm{~m}=56 \mathrm{~m}$
c. $\mathrm{P}=2 l+2 b$
$=2(5,1 \mathrm{~cm})+2(4,9 \mathrm{~cm})$
d. $\mathrm{A}=l \times b$
$=10,2 \mathrm{~cm}+9,8 \mathrm{~cm}=20 \mathrm{~cm}$
b. $\mathrm{A}=l^{2}$ $=(5,2 \mathrm{~cm})^{2}$

$$
=27,04 \mathrm{~cm}^{2}
$$

$=4,5 \mathrm{~m} \times 2,8 \mathrm{~m}$
$=12,6 \mathrm{~m}^{2}$

## 80 Interpreting graphs: temperature and time graphs

## Objectives

- Analyse and interpret graphs of problem situations, with a special focus on the following trends and features:
- Constant, increasing or decreasing.
- Linear or non-linear


## Dictionary

Linear: a graph that is a straight line
Non-linear: a graph with a curve(s)
Increasing: a graph that slopes upwards from left to right (e.g. from
$(2,3)$ to $(5,7)$ )
Decreasing: a graph that slopes downwards from left to right (e.g. from $(2,3)$ to $(5,7))$
Maximum: point on a graph where the graph changes from increasing to decreasing (highest point on the graph)
Minimum: point on the graph where the graph changes from decreasing to increasing (lowest point on the graph)
X-axis: the horizontal line on the graph (left-right) through zero
Y-axis: the vertical line on the graph (top-bottom) through zero

## Introduction

> Ask the learners if they would make any changes or add anything to the graph.


## 80 Interpreting graphs: temperature and time graphs continued

a.i.	$19,5^{\circ} \mathrm{C}$
ii.	$23^{\circ} \mathrm{C}$
iii.	$24^{\circ} \mathrm{C}$
iv.	$32^{\circ} \mathrm{C}$
v.	$34^{\circ} \mathrm{C}$
b.	$27^{\circ} \mathrm{C}$

c. The temperature drops $\therefore$ It is colder the fewer chirps the lower the temperature.
d. If the temperature increases the chirping increases. If the chirping decreases the temperature also decrease.

Average temperature per annum for Johannesburg, Cape
Town and Durban.
Answers:
a. i. $22{ }^{\circ} \mathrm{C}$
ii. $\quad 16^{\circ} \mathrm{C}$
iii. $\quad 22^{\circ} \mathrm{C}$
iv. $\quad 22^{\circ} \mathrm{C}$
v. $\quad 18{ }^{\circ} \mathrm{C}$
b. i. $\quad 10^{\circ} \mathrm{C}$
ii. $\quad 11^{\circ} \mathrm{C}$
iii. $\quad 9^{\circ} \mathrm{C}$
iv. $20^{\circ} \mathrm{C}$
v. $\quad 7^{\circ} \mathrm{C}$
c. i. $26^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}=4{ }^{\circ} \mathrm{C}$
ii. $24^{\circ} \mathrm{C}-21^{\circ} \mathrm{C}=3^{\circ} \mathrm{C}$
iii. $18^{\circ} \mathrm{C}-18{ }^{\circ} \mathrm{C}=0^{\circ} \mathrm{C}$
iv. $24^{\circ} \mathrm{C}-23{ }^{\circ} \mathrm{C}=1^{\circ} \mathrm{C}$
v. $22^{\circ} \mathrm{C}-21^{\circ} \mathrm{C}=1{ }^{\circ} \mathrm{C}$
d. During the summer months the temperature increases and during winter months the temperature decreases.

## Answer:

Johannesburg: December min: $14{ }^{\circ} \mathrm{C}$, max: $26^{\circ} \mathrm{C}$, difference $12^{\circ} \mathrm{C}$ Durban: December min: $7{ }^{\circ} \mathrm{C}$, max: $26^{\circ} \mathrm{C}$, difference $19^{\circ} \mathrm{C}$
Cape Town: December min: $14{ }^{\circ} \mathrm{C}$, max: $24^{\circ} \mathrm{C}$, difference $10^{\circ} \mathrm{C}$
Durban: The temperature is more constant, minimum is warmer

## Reflection questions

Did learners meet the objectives?


## Common errors

Make notes of common errors made by the learners

## 81 Interpreting graphs: rainfall and time graphs

## Objectives

- Analyse and interpret graphs of problem situations, with a special focus on the following trends and features:
- Constant, increasing or decreasing
- Linear or non-linear


## Dictionary

Linear: a graph that is a straight line
Non-linear: a graph with a curve(s)
Increasing: a graph that slopes upwards from left to right (e.g. from
$(2,3)$ to $(5,7)$ )
Decreasing: a graph that slopes downwards from left to right (e.g. from $(2,3)$ to $(5,7))$
Maximum: point on a graph where the graph changes from increasing
to decreasing (highest point on the graph)
Minimum: point on the graph where the graph changes from decreasing to increasing (lowest point on the graph)
X-axis: the horizontal line on the graph (left-right) through zero
Y-axis: the vertical line on the graph (top-bottom) through zero


## Introduction



## 81 Interpreting graphs: rainfall and time graphs continued



## 82 Drawing graphs

## Objectives

- Analyse and interpret graphs of problem situations, with a special focus on the following trends and features

40
Introduction

- Constant, increasing or decreasing
- Linear or non-linear


## Dictionary

Linear: a graph that is a straight line
Non-linear: a graph with a curve(s)
Increasing: a graph that slopes upwards from left to right (e.g. from
$(2,3)$ to $(5,7)$ )
Decreasing: a graph that slopes downwards from left to right (e.g. from $(2,3)$ to $(5,7)$ )
Maximum: point on a graph where the graph changes from increasing to decreasing (highest point on the graph)
Minimum: point on the graph where the graph changes from decreasing to increasing (lowest point on the graph)
X-axis: the horizontal line on the graph (left-right) through zero
Y-axis: the vertical line on the graph (top-bottom) through zero


Ask the learners:

- Is this graph linear or non-linear?
- Is the graph increasing or decreasing?

Explain why.

- Where is the x-axis?
- Where is the y-axis?


## 82 Drawing graphs continued

Topic: Graphs Content links: 80-81, 83-85 Grade 8 links: R9, 114-120 Grade 9 links: R9, 88-89



83 Drawing more graphs

## Objectives

- Draw graphs from given descriptions of a problem situation, identifying the following features:
- Linear and non-linear graphs
- Increasing and decreasing
- Maximum and minimum


## Dictionary

Linear: a graph that is a straight line
Non-linear: a graph with a curve(s)
Increasing: a graph that slopes upwards from left to right (e.g. from $(2,3)$ to $(5,7)$ )
Decreasing: a graph that slopes downwards from left to right (e.g.
from $(2,3)$ to $(5,7))$
Maximum: point on a graph where the graph changes from increasing to decreasing (highest point on the graph)
Minimum: point on the graph where the graph changes from decreasing to increasing (lowest point on the graph)
X-axis: the horizontal line on the graph (left-right) through zero Y-axis: the vertical line on the graph (top-bottom) through zero Average: to calculate a "central" or "mean" value of a set of numbers by adding up all the numbers, then dividing the total by the amount of numbers there are, e.g. the average of this set of numbers $(1,2,3,4,5$, $6,7)$ is $(1+2+3+4+5+6+7=28 \div 7=4)$


## 83 Drawing more graphs continued




## 84 Drawing graphs again

Topic: Graphs Content links: 80-83, 85

## Objectives

- Draw graphs from given descriptions of a problem situation


## Dictionary

X-axis: the horizontal line on the graph (left-right) through zero Y-axis: the vertical line on the graph (top-bottom) through zero Intervals: amount of time or space between things or the numbers inbetween two specific values



## 84 Drawing graphs again continued



## 85 Drawing even more graphs

## Objectives

Draw graphs from given descriptions of a problem situation, identifying
the following features:

- Linear and non-linear graphs
- Increasing and decreasing


## Dictionary

Linear: A graph that is a straight line
Non-linear: A graph with a curve(s)
Increasing: A graph that slopes upwards from left to right (e.g. from
$(2,3)$ to $(5,7))$
Decreasing: A graph that slopes downward from left to right (e.g. from
$(2,3)$ to $(5,7)$ )
X-axis: The horizontal line on the graph (left-right) through zero.
Y-axis: The vertical line on the graph (top-bottom) through zero


Draw graphs using data from the following tables. Describe each graph using the words increasing, decreasing, constant, linear and non-linear.
Answers: (Possible answers)
a. Thabo's brisk walking results. The time walked was recorded after $2,4,6,8$ and 10 km .


This is a linear graph with a constant increase in distance and corresponding increase in time.

## 85 Drawing even more graphs continued



## 86 Transformations

## Objectives

- Recognise, describe and perform translations, reflections, and rotations with geometric figures and shapes


## Dictionary

Translations: the movement of geometric figures/object from one point to another without changing its shape, size or orientation
Reflection: the change of geometric figures' form in an identical but opposite form, a transformation that has the same effect as a mirror Rotation: the movement of geometric figures when they turn on one fixed point
Origin: a starting point or where the two axes cross in a graph or the point about which figures rotate in a rotation transformation



## 86 Transformations continued



Topic: Transformations Content links: 86 Grade 8 links: 124 Grade 9 links: R12, 109

## Objectives

- Recognize, describe and perform translations, reflections and rotations with geometric figures and shapes


## Dictionary

Rotation: the movement of geometric figures when they turn on one fixed point
Rotational symmetry: the symmetry of a shape which may be turned around a fixed point a certain distance and still look the same in the new position


87 Rotation continued


Complete the table below by rotating each shape and draw the rotated shape.



## 88 Translation

## Objectives

- Recognize, describe and perform translations, reflections and rotations with geometric figures and shapes on squared paper


## Dictionary

Translations: the movement of geometric figures/object from one point to another without changing its shape, size or orientation

Introduction


A translation is the movement of an object to a new position without changing its shape, size or orientation

When a shape is transformed by sliding it to a new position, without turning, it is said to have been translated.


Explain each translation in your own words. The original shape is shaded.
Answers:
a. $\underset{\mathbf{4}}{\rightarrow} \uparrow 44$ units to the right $\quad$ b. $\leftarrow \quad \downarrow_{4} 4 \quad 4$ units to the left
c. $\boldsymbol{2} \downarrow \downarrow^{4} \begin{aligned} & 2 \text { units to the right } \\ & 4 \text { units down }\end{aligned}$


Show the following translations on a grid board.

Answers:
a. Each point of the triangle
is translated four squares to the right and five squares up.
b. Each point of the rectangle is translated three squares to the left and three squares up.


## 88 Translation continued

Topic: Transformations Content links: 86 Grade 8 links: 124 Grade 9 links: R12, 109


## 89 Reflection and reflective symmetry

## Objectives

- Identify and draw lines of symmetry in geometric figures
- Recognize, describe and perform translations, reflections and rotations with geometric figures and shapes on squared paper.


## Dictionary

Reflection: a transformation that has the same effect as a mirror Reflective symmetry: a transformation that has the same effect as a mirror where one image is a mirror image of the other

Introduction
Reflection: a reflection is a transformation that has the same effect as a mirror image.


Reflective symmetry
An object is symmerrical when one half is a mirror image of the other half.


Draw all the lines of symmetry for each figure, where applicable. Answers:

a.		C.   one
d.	e. one	f.   none



The following design uses reflective symmetry. One half is a reflection of the other half. The two halves are exactly alike and fit perfectly on top of each other when the design is folded correctly. How many lines of symmetry are there? Answers:


Four lines of symmetry

Show reflection using the geometric figure given. Remember to show the line of reflection.

Answers:

b.



Look at the reflections and describe them.
Answers:
a. This is a vertical reflection, in other words it is reflected on the $y$-axis
b. This is a horizontal reflection, in other words it is reflected on the x -axis

## 90 Transformations again

Topic: Transformations Content links: 86

## Objectives

Recognize, describe and perform translations, reflection's and rotations with geometric figures and shapes on squared paper

## Dictionary

Translation: the movement of a geometric figure or object from one point to another without changing its shape, size or orientation (SLIDE) Reflection: the change of geometric figures' form in an identical but opposite form, a transformation that has the same effect as a mirror (FLIP) Rotation: the movement of geometric figures when they turn on one fixed point (TURN)


Describe each diagram. Make use of words such as mirror shape, original shape, line of reflection and vertical. Answers:

b. This is a reflection on a horizontal line
c. This is a reflection of an original shape using a diagonal line creating a mirrored shape.

## 90 Transformations again continued



## 91 Investigation

Topic: Transformations Content links: 86 Grade 8 links: None Grade 9 links: None

## Objectives

Recognize, describe and perform translations, reflection's and rotations with geometric figures and shapes on squared paper.

## Dictionary

Translations: Is moving without resizing, rotating or flipping-all points move the same distance and direction.
Reflection: Is a flip over a line.
Rotation: Is turning around a centre.


## Introduction

When we do an investigation we should:

- spend enough time exploring problems in depth
- find more than one solution to many problems
- develop your own strategies and approaches, based on your knowledge and
understanding of mathematical relationships
- choose from a variety of concrete materials and appropriate resources
- express your mathematical thinking through drawing, writing and talking.

Prove that the diagonal of a square is not equal to the length of any of its sides.
a. Make a drawing to show each of the following:

b. What do I want?

To compare the length of a side of a square with the length of a diagonal.
I can/must use rotation, translation and/or reflection.
c. What do I need to introduce? Make a drawing of each.


## 91 Investigation continued

d. Attack

We often get "stuck" and are tempted to give up. However, this is the exact point at which it is important for you to use the time and space to get through the point of frustration and look for alternative ideas. This is the phase when we make conjectures, collect data, discover patterns and try to justify our answers. Answer: Cut a square along the diagonal. Fit diagonal on 4 sides and compare length. The diagonal is longer than all 4 sides since it overlaps when placed side by side.
e. Review


Check your conclusions or resolutions, reflect on what you did - the key ideas and key moments.

Answer: The square's diagonal is longer than any side since if cut and placed side by side it overlaps. Even if rotated all the sides become shorter than the diagonal.

61

## Renlection questions

Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 92 Enlargement and reduction

## Objectives

- Draw enlargements and reductions of geometric figures on squared paper and compare them in terms of shape and size


## Dictionary

Resizing: changing the size of an object or geometric shape but retaining its aspect ratio.
Ratio: a relationship between two numbers of the same kind (that is, for every amount of one thing, how much is there of another thing)
Aspect ratio: the relation between the length and width of a geometric shape, e.g. a square has an aspect ratio of 1:1
Enlargement: making an object bigger than the original size
Reduction: making an object smaller than the original size
Introduction
62
Look at this diagram and discuss it.


Orange rectangle
The length $=5$ The width $=3$ Blue rectangle
The length $=10$ The width $=6$

Use the diagrams to answer the questions.
Answers: a.

Blue square	Red square	Green square
Length = 2	Length = 4	Length =9
Width = $\underline{2}$	Width = 4	Width = 9

b. The length of the red square is 2 times the length of the blue square. The width of the red square is 2 times the width of the blue square. The red square is 2 times enlarged.
c. The length of the green square is 3 times the length of the red square rectangle. The width of the green square is 3 times the width of the red square. The green square is 3 times enlarged.
d. The length of the green square is 6 times the length of the blue square. The width of the green square is 6 times the width of the blue square. The blue square is 6 times reduced.

92 Enlargement and reduction continued
Topic: Transformations Content links: R11, 93-94 Grade 8 links: 125-126 Grade 9 links: R12, 112-113


## 93 More enlargement and reduction

Topic: Transformations Content links: 92, 94

## Objectives

- Draw enlargements and reductions of geometric figures on squared paper and compare them in terms of shape and size


## Dictionary

Enlargement: making an object bigger than the original size
Reduction: making an object smaller than the original size
Scale factor: the value of the multiplier or divisor used to make an
enlargement or reduction in the size of a shape

## Introduction

64
How do you know this figure is enlarged by 3 ?


By what is this shape enlarged? Write down all the steps. Answers: Scale factor 2


Horizontal length of red figure is 4 units Horizontal length of blue figure is 8 units Therefore scale factor is $\frac{8}{4}=2$
b. scale factor 3


93 More enlargement and reduction cont...


94 Enlargements and reductions
Topic: Transformations Content links: 92-93

## Objectives

- Draw enlargements and reductions of geometric figures on squared paper and compare them in terms of shape and size


## Dictionary

Enlargement: making an object bigger than the original size
Reduction: making an object smaller than the original size
Scale Factor: the value of the multiplier or divisor used to make an enlargement or reduction in the size of a shape

## Introduction

## 66

Use the knowledge you gained in the previous two worksheets. You might need to revise the following words:

- enlargement
- reduction
- scale factor


94 Enlargements and reductions continued



## 95 Prisms and pyramids

## Objectives

- Describe, sort and compare polyhedra in terms of:
- Number of edges
- Number of vertices
- Shape and number of faces
- Revise using nets to create models of geometric solids, including cubes, prisms and pyramids


## Dictionary

Polygon: a plane 2-D shape enclosed by a number or straight lines (edges) joined together at vertices (corners)
Polyhedron: a 3-D object which consists of a collection of polygons, usually joined at their edges
Pyramid: This is a 3-D object that has a polygon as a base. The base of the pyramid give the pyramid its name. The other faces are all triangles which meet at the top (the apex).
Prism: This is a 3-D object that has two identical parallel faces that gives the shape its name. The rest of the faces are always rectangles or parallelograms.
Edge: a straight line where two surfaces are joined
Vertice: a point where three or more surfaces meet (corner)
Face: a surface of a solid object


95 Prisms and pyramids continued


Identify and name all the geometric solids (3-D objects). Answers:


Hexagonal prism


Identify, name and label as many pyramids and prisms as you can in these photos. Answers:


> | Rectangular |
| :--- |
| prisms |
| Triangular prisms |
| Cubes |
| Square Prisms |

Rectangular prism Triangular prisms Square-based prism


## Objectives

- Describe, sort and compare polyhedra in terms of:

Face: a surface of a solid object

- Number of edges

Hexahedron: a 3-D object with 6 faces, e.g. cube

- Number of vertices

Cube: a 3-D geometric figure with six square faces
Tetrahedron: a 3-D object that has four equilateral (identical) triangles,

- Shape and number of faces
e.g. a triangular pyramid
- Revise using nets to create models of geometric solids, including cubes, prisms and pyramids
- Describe, sort and compare polyhedra in terms of:
- Number of edges
- Shape and number of faces
- Number of vertices


## Dictionary

Polygon: a plane 2-D shape enclosed by a number or straight lines (edges) joined together at vertices (corners)
Polyhedron: a 3-D object which consists of a collection of polygons, usually joined at their edges
Pyramid: This is a 3-D object that has a polygon as a base. The base of the pyramid give the pyramid its name. The other faces are all triangles which meet at the top (the apex).
Prism: This is a 3-D object that has two identical parallel faces that gives the shape its name. The rest of the faces are always rectangles or parallelograms.
Edge: a straight line where two surfaces are joined
Vertice: a point where three or more surfaces meet (corner)
Introduction
Ask the learners if they would make any changes or add anything to the graphic.


96 3-D objects continued


## 97 Building 3-D models

## Objectives

- Revise using nets to make models of geometric solids, including cubes, prisms and pyramids


## Dictionary

Polygon: a plane 2-D shape enclosed by a number or straight lines (edges) joined together at vertices (corners)
Polyhedron: a 3-D object which consists of a collection of polygons usually joined at their edges
Pyramid: This is a 3-D object that has a polygon as a base. The base of the pyramid gives the pyramid its name. The other faces are all triangles which meet at the top (the apex).
Prism: This is a 3-D object that has two identical parallel faces that gives the shape its name. The rest of the faces are rectangles.
Hexahedron: a 3-D object with six faces, e.g. a cube
Cube: a 3-D geometric figure with six square faces
Tetrahedron: a 3-D object that has four equilateral (identical) triangles, e.g. a triangular pyramid

Edges: a straight line, where two surfaces are joined Vertices: a point where three or more surfaces meet (corner)

72

## Introduction

## 97 Building 3-D models continued

a. Use waste products to make these geometric solids:

- prisms (triangular prism, cube, rectangular, pentagonal, hexagonal and octagonal)


## Some presentation guidelines

When presenting you should:

- Think about what you want to communicate and organise your presentation well
- Stand up straight and confidently with both feet firmly
- pyramids (triangular, tetrahedron, rectangular pentagonal, hexagonal and octagonal)


## on the ground

Start by explaining what the content of presentation is about

- Explain all points thoroughly
- Maintain the interest level of the class by: - Making eye contact with different people throughout the presentation
- Using natural hand gestures to demonstrate
- Using visual aids to enhance the presentation
- Demonstrate a strong positive feeling about the topic during the entire presentation
- Stay within the required time limits

Answer: Learners' own answers and presentations


## 98 Visualising 3-D objects/playing a game Topic: .3.Dobiects Content tinks: 102

## Objectives

- Visualise 3-D objects
- Recognise 3-D objects from different views


## Dictionary

Polygon: a plane 2-D shape enclosed by a number or straight lines (edges) joined together at vertices (corners)
Polyhedron: a 3-D object which consists of a collection of polygons, usually joined at their edges
Pyramid: This is a 3-D object that has a polygon as a base. The base of the pyramid gives the pyramid its name. The other faces are all triangles which meet at the top (the apex).
Prism: This is a 3-D object that has two identical parallel faces that gives the shape its name. The rest of the faces are rectangles.
Edges: a straight line, where two surfaces are joined
Vertices: a point where three or more surfaces meet (corner)
Faces: surfaces of a solid object




## 99 Faces, vertices and edges

## Objectives

- Describe, sort and compare polyhedra in terms of:
- Number of edges
- Shape and number of faces
- Number of vertices


## Dictionary

Polygon: a plane 2-D shape enclosed by a number or straight lines (edges) joined together at vertices (corners)
Polyhedron: a 3-D object which consists of a collection of polygons, usually joined at their edges
Pyramid: This is a 3-D object that has a polygon as a base. The base of the pyramid gives the pyramid its name. The other faces are all triangles which meet at the top (the apex).
Prism: This is a 3-D object that has two identical parallel faces that gives the shape its name. The rest of the faces are rectangles.
Edges: a straight line, where two surfaces are joined
Vertices: a point where three or more surfaces meet (corner)
Faces: surfaces of a solid object
Net: a flat diagram that can be folded to create a 3-D solid
Skeleton: a diagram that shows the framework of a 3-D object and shows its edges and vertices


Label the surfaces, vertices and edges on each photograph. Answers:

b.


d. An apex is the highest point of a geometric solid with respect to a line or plane chosen as base.

## 99 Faces, vertices and edges continued



## 100 More faces, vertices and edges

Topic: 3-D objects Content links: 99, 101 Grade 8 links: 130 Grade 9 links: 118-120

## Objectives

- Describe, sort and compare polyhedra in term of:
- Shape and number of faces
- Number of vertices


## Dictionary

Polyhedron: In geometry, a polyhedron ( plural polyhedra or
polyhedrons) is a geometric solid in three dimension with flat faces and straight edges. The word polyhedron comes from Classic Greek words: poly = many + hedron = base or face
Net: a flat diagram that can be folded to create a 3-D solid


100 More faces, vertices and edges continued

	Name of   solid	Shapes   made of	No. of   edges	No. of   vertices	No. of   surfaces
	Tetrahedron   (triangular   pyramid)	4 triangles	6	4	4
	Square   pyramid	1 square   4 triangles	8	5	5
	Octagonal   prism	2 octagons   8 rectangles	24	26	10
	Hexagonal   prism	2 hexagons   6 rectangles	18	12	8
	Hexagonal   pyramid	1 hexagon   6 triangles	12	7	7
	Octagonal   pyramid	2 octagons   8 triangles	16	9	9

Look at the table above.
a. Compare a triangular pyramid and a square pyramid. Describe the similarities and differences between them.


## 101 Even more faces, vertices and edges

## Objectives

- Describe, sort and compare polyhedral in term of:
- Number of edges
- Shape and number of faces
- Number of vertices


## Dictionary

Prism and pyramid with the same name (hexagonal prism and hexagonal pyramid, for example) have a same type of the base, but differ in that the prism has two bases, and pyramid only one.

80

## Introduction



Even more foces, vertices ond edoes cont... $\begin{aligned} & \text { Topic: } 3 \text {-D objects Content links: } 99-100 \\ & \text { Grade } 8 \text { links: } 130 \text { Grade } 9 \text { links: } 118-120\end{aligned}$

		Solid	Vertices	Edges	Faces	Calculate F-E   +V for each geometric solid.   F = faces, $\mathrm{E}=$ edges and $V=$ vertices. What do you notice?
	Triangular prism		6	9	5	$5-9+6=2$
	Rectangular prism		8	12	6	$6-12+8=2$
	Pentagonal prism		10	15	7	$7-15+10=2$
	Hexagonal prism		12	18	8	$8-18+12=2$
	Octagonal prism		16	24	10	$10-24+16=2$
	Triangular pyramid		4	6	4	$4-6+4=2$
	Square pyramid		5	8	5	$5-8+5=2$
	Pentagonal pyramid		6	10	6	$6-10+6=2$



## Objectives

Revise using nets to make models of a geometric solid: cube

## Dictionary

Cube: In geometry, a cube is a three-dimensional solid object which has six square faces (or sides), eight vertices and twelve edges. The cube can also be called a regular hexahedron and is one of the five Platonic solids.
Net: a flat diagram that can be folded to create a 3-D solid

## Introduction

Did you know?
A cube has 11 nets: there are 11 ways to flatten a hollow cube by cutting seven edges.

You can do this activity with those learners that are done with their work.


102 Views continued
Topic: 3-D objects Content links: None Grade 8 links: 134 Grade 9 links: 118-120


## 103 Constructing a pyramid net

Topic: 3-D objects Content links: 95 Grade 8 links: None Grade 9 links: None


## Dictionary

Pyramid: This is a 3-D object that has a polygon as a base. The base of the pyramid gives the pyramid its name. The other faces are all triangles which meet at the top (the apex).
Prism: This is a 3-D object that has two identical parallel faces that gives the shape its name. The rest of the faces are rectangles.

## Introduction

Did you know?
The pyramid of Khufu (at Giza in Egypt) is one of Seven Wonders of the Ancient world, and it was originally 146,5 metres high when it was built about 4575 years ago


103 Constructing a pyramid net continued

Topic: 3-D objects Content links: 95 Grade 8 links: None Grade 9 links: None


Answer: Learner's own answer

## Reflection questions

Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.
i) After you have constructed the square-based pyramid, answer the following questions:

- what difficulties did you have?

Answer: Learner's own answer

- what would you do differently next time?

Answer: Learner's own answer
ii) Now do the construction on cardboard, cut it out and make the square pyramid.

## 104 Construct a net of a prism

Topic: 3-D objects Content links: 95
Grade 8 links: None Grade 9 links: None

## Objectives

- Construct a net of a triangular prism and a rectangular prism


104 Construct a net of a prism continued



Answer: This prism is showing us the refraction of light rays. As white light travels through a glass triangular prism it is broken up into light of the separate colours of the rainbow.

Reflection questions
Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## Objectives

- Recognize, order and compare integers
- Count forward and backwards in integers for any interval


## Dictionary

Integer: any whole number, positive or negative and including zero

## Introduction



Write the appropriate temperature for the stated weather condition. Answers: these are some possible answers
a. About $29^{\circ} \mathrm{C}$, at least above $25^{\circ} \mathrm{C}$
b. About $20^{\circ} \mathrm{C}$, betweeen $18{ }^{\circ} \mathrm{C}$ and $22^{\circ} \mathrm{C}$
c. About $1^{\circ} \mathrm{C}$, between $0^{\circ} \mathrm{C}$ and $5{ }^{\circ} \mathrm{C}$
d. $-8{ }^{\circ} \mathrm{C}$
e. 10 below zero - the further it moves away from the zero (from right to left or from top to bottom on the thermometer scale) the colder it becomes
.

Where will the money mentioned in each sentence go, in the negative or positive column? Answers:

Statement	Positive	Negative
a. Peter won R100 in the draw.	$\checkmark$	
b. Peter gave his twin sister half of his prize		$\checkmark$
c. Cindy lost her purse with R20 in it.		$\checkmark$
d. David sold his cell phone for R200.	$\checkmark$	
e. I bought airtime for R50 with some of my savings.		$\checkmark$
f. We raised R500 during the school fetê.	$\checkmark$	
g. We used R100 from the money raised to buy food for the party.		$\checkmark$
h. My older brother earned R120 for the work he did.	$\checkmark$	
i. We made R100 profit.	$\checkmark$	
j. We made R200 loss.		$\checkmark$



Complete the questions below after completing the table in Question 2. Answers:
a. Words that should be circled are: won, gave, lost, sold, bought, raised, used, earned, profit, loss
b. When the money becomes more it is ticked off in the positive column. c. When it becomes less it is ticked off in the negative column.
d. It includes positive and negative whole numbers and zero.
e. Some examples are:

Temperatures above ( + )and below (-) zero
Checking bank accounts: sufficient funds ( + ) and overdrawn ( - ) Business: Profit (+) and loss (-)
Healthy eating: Calories eaten $(+)$ and calories burned (-)


Complete the following: Answers:
a. $\{3,2,1,0,-1,-2,-3\}$
b. $\{-10,-9,-8,-7,-6,-5\}$
c. $\{8,6,4,2,0,-2,-4,-6\}$
d. $\{-9,-6,-3,0,3,6\}$
e. $\{12,8,4,0,-4,-8\}$

[^0]Answer: Here is an example.
a. $-5^{\circ} \mathrm{C}$ : temperature of weather in Europe

- R50: price cut on dress
- 1\%: percentage of share price
- 40: NIKKEI Commodities
-5 kg : weight loss
b. $-5^{\circ} \mathrm{C}$ : opposite number is $5^{\circ} \mathrm{C}$
- R50: opposite number is R50
$-1 \%$ : opposite number is $1 \%$
- 40: opposite number is 40
-5 kg : opposite number is 5 kg
Reflection questions
Did learners meet the objectives?


## 106 More integers

Topic: Integers Content links: 105, 107-113 Grade 8 links: R4, 11-13 Grade 9 links: None

## Objectives

- Recognize, order and compare integers
- Count forward and backwards in integers for any interval
g. 14 units to the right of -2 on a number line. 12
h. Seven units to the left of -8 on a number line. -15
i. The opposite of -108 .

108
j. 15 below zero. -15

## Dictionary

Integer: any whole number, positive or negative and including zero

## Introduction



Write an integer to represent each description.
Answers:
a. Five units to the left of 4 on a number line. -1
b. 20 below zero. -20
c. The opposite of 271. -271
d. Eight units to the left of -3 on a number line. -11
e. Eight units to the right of -3 on a number line. 5

## 106 More integers continued

Fill in $<,>$ or $=$ :   Answers:   a. $-2<2$   b. $-10<10$   c. $-5<0$   d. $-4<-3$   e. $-9<-6$   f. $-20<-16$   Give five numbers smaller than and five numbers bigger than:   Answers: Possible answers are:   a. -2   b. -99   c. 1	Fill in $<,>$ or $=$ :   Answers:   a. $-2<2$   b. $-10<10$   c. $-5<0$   d. $-4<-3$   e. $-9<-6$   f. $-20<-16$   Give five numbers smaller than and five numbers bigger than:   Answers: Possible answers are:   a. -2   b. -99					
	Smaller   -3   -4   -5   -6   -7	Bigger   -1   1   2   3   8	Smaller   -100   -140   -145   -160   -190	Bigger   -98   -80   -1   3   5	Smaller   0   -1   -3   -5   -9	Bigger   2   6   10   15   101



## 107 Calculate integers

## Objectives

- Add and subtract with integers


## Dictionary

Integer: any whole number, positive or negative and including zero

94

## Introduction

What is the opposite of -3 ? How many units are there from -3 to 3 ?


Answers:
a. $-5+5=0$
b. $-2+3=1$
c. $-7+8=1$
d. $2-3=-1$
e. $+4-6=-2$
f. $10-12=-2$

Calculate the following.
Example: $-2+3-5=-4$

Answers:
a. $-3+2-5=-6$號 opposite integers for the following:
Answers:
a. -2 is 2
b. 8 is -8
b. 3 is -3
c. -7 is 7
g. 1 is -1
e. -10 is 10
f. -15 is 15
i. 75 is -75


107 Calculate integers continued


Complete the following.
Answers:
a. Subtract 4 from -3 is -7
b. Subtract 6 from -8 is -14
c. Subtract 5 from 3 is -2
d. Subtract 9 from 7 is -2
e. Subtract 3 from -2 is -5


The sum of 19 and -8 , and the sum of -19 and 8 ?
The sum of -7 and -14 , and the sum of -4 and 20 ?
The sum of 100 and -50 , and the sum of -100 and 50 ?
Answers:
$10+8+(-9-8)=18-17=1$
$101+85+(-98-104)=186-202=-16$
$19-8+(-19+8)=11+(-11)=0$
$-7-14+(-4+20)=-21+16=-5$
$100-50+(-100+50)=50-50=0$
Reflection questions
Did learners meet the objectives?

## 108 Integer operations

## Objectives

- Solve problems in context involving addition and subtraction with integers
- Add and subtract with integers


## Dictionary

Integer: any whole number, positive or negative and including zero

## Introduction

Complete the following

- Number line method - Drawing a diagram Answers:
a. Find $-8+(-3)$

$-8+(-3)=-11$
b. Find $-12+(-8)$

$-12+(-8)=-20$


108 Integer operations continued
Topic: Integers Content links: 105-107, 109-1 13 Grade 8 links: R4, 11-13 Grade 9 links: None


## 109 Adding and subtracting integers

## Objectives

- Add and subtract with integers

Dictionary
Integer: any whole number, positive or negative and including zero

## Introduction

Subtracting a negative number is just like adding a positive number. The two negatives cancel each other out. $2+3=2-(-3)$

If you are adding a positive number, move your finger to the right as many places as the value
of that number. For example, if you are adding 3 , move your finger three places to the right: 2
$+3=5$


Calculate the following, make use of number lines. Answers:

b. $5+(-7)=-2$

c. $7+(-8)=-1$

d. $6+(-9)=-3$

e. $3+(-2)=1$

f. $4+(-7)=-3$


## 109 Adding and subtracting integers continued




## 110 Integer calculations

Topic: Integers, Properties of numbers Content links: R9, 105-109, 111-113 Grade 8 links: R4, 11-13 Grade 9 links: None

## Objectives

- Add and subtract with integers


## Dictionary

Integer: any whole number, positive or negative and including zero

## Introduction




110 Integer calculations continued
Topic: Integers, Properties of numbers Content links: R9, 105-109, 111-113 Grade 8 links: R4, 11-13 Grade 9 links: None

d. \begin{tabular}{rl}
\& $47-(-46)$ <br>
\& $=47+46$ <br>
\& $=93$

 g. 

\& $-47-(-7)$ <br>
\& $=-47+7$ <br>
\& $=-40$ <br>
j. \& $5-31$ <br>
\& $=-26$
\end{tabular}

Solve the following:
Answers:
a. $-2+44=42$
d. $-3+36=33$
g. $42+23=65$
j. $-46+(-26)=-72$
m. $-37+(-44)=-81$
p. $11+(-30)=-19$
s. $30+(-29)=1$
v. $-35+24=-11$
y. $22+4=26$
e. $\begin{aligned} & (-41)-17 \\ = & -58\end{aligned}$
h. $-28-15$
$=-43$
b. $-14+(-18)=-32$
e. $14+2=16$
h. $-2+(-10)=-12$
k. $2+(-43)=-41$
n. $37+(-31)=6$
q. $-18+24=6$
t. $12+(-44)=-32$
w. $23+10=33$
z. $41+19=60$

## f. $28-(-46)$ <br> $=28+46$ <br> $=74$

i. $-15-3$
$=-18$
c. $-9+(-21)=-30$
f. $14+49=63$
i. $38+27=65$
l. $46+(-16)=30$
o. $-4+(-28)=-32$
r. $45+28=73$
u. $-44+29=-15$
x. $-31+49=18$

101
a. Give three integers of which the sum is -9 . Use two positive integers and one negative integer.
b. Give three integers of which the sum is -4 . Use two negative integers and one positive integer.
c. Give four integers of which the sum is $\mathbf{- 1 1}$. Use two negative integers and two positive integers.

## Answers:

a. $3+4+(-16)=-9$
b. $-12+(-4)+12=-4$
c. $-51+(-3)+40+3=-11$

Renlection questions
Did learners meet the objectives?


## Common errors

Make notes of common errors made by the learners

## 111 Commutative property and integers

## Objectives

- Recognize and use the commutative property of addition for integers


## Dictionary

Integer: any whole number, positive or negative and including zero
Commutative: In any operation of addition or multiplication the order in
which you combine numbers does not matter. Subtraction and division are not commutative.
E.g. $4+5=5+4$
$-4+5=5+(-4)$

## Introduction




102

Use the commutative property to change the following expressions to equations.

$$
\begin{array}{ll}
\text { Example: } & 8+(-3)=(-3)+8=5 \\
& (-8)+3=3+(-8)=-5
\end{array}
$$



$$
\text { b. }(-10)+7
$$

a. $4+(-5)$

$4+(-5)=(-5)+4$   $=-1$	$-(10)+7=7+(-10)$   $=-3$	$3+(-9)=(-9)+3$   $=6$

$$
\text { c. } 3+(-9)
$$

d. $8+(-11)$	e. $(-4)+8$	f. $9+(-2)$
$8+(-11)=(-11)+8$   $=-3$ $(-4)+8=8+(-4)$   $=4$ $9+(-2)=(-2)+9$   $=7$		

Show that the communicative property holds for the addition of integers.

$$
\text { Example: } \quad a=-2 \text { and } b=3
$$

$a+b=b+a$
$(-2)+3=3+(-2)$
$1=1$

## 111 Commutative property and integers continued

a. $a+b=b+a$ if $a+4 ; b=-1 \quad$ b. $a+b=b+a$ if $a=-2 ; b=7$
$a+b=b+a$
$4+(-1)=(-1)+4$
$3=3$
c. $a+b=b+a$ if $a=2 ; b=7$
$a+b=b+a$
$2+7=7+2$
$9=9$
e. $x+y=y+x$ if $x=-5 ; y=9$
$x+y=y+x$
$-5+9=9+(-5)$
$4=4$
f. $\begin{aligned} & d+e=e+d \text { if } e=-12 ; d=7 \\ & \begin{array}{l}\begin{array}{l}d+c=c+d \\ 7+(-12)=(-12)+7 \\ -5=-5\end{array} \\ \end{array}\end{aligned}$
h. $a+b=b+a$ if $a=-10 ; b=7$

$$
\begin{aligned}
& t+5=5+t \\
& -4+10=10+(-4) \\
& 6=6
\end{aligned}
$$

$$
\begin{aligned}
& a+b=b+a \\
& -2+7=7+(-2) \\
& 5=5
\end{aligned}
$$

$$
\begin{aligned}
& x+y=y+x \\
& -1+13=13+(-1) \\
& 12=12
\end{aligned}
$$

i. $y+z=z+y$ if $z=-8 ; y=2$
j. $k+m=m+k$ if $k=-13 ; m=20$
$y+z=z+y$
$2+(-8)=(-8)+2$
$-6=-6$

$$
\begin{aligned}
& k+m=m+k \\
& -13+20=20+(-13) \\
& 7=7
\end{aligned}
$$

103


$$
\begin{array}{ll}
\text { Answers: an example answer } & \\
\begin{array}{l}
a+b=b+a \\
-8+21=21+(-8)
\end{array} & \text { if } a=-8 \\
13=13 & b=21
\end{array}
$$

Reflection questions
Did learners meet the objectives?

Common errors
Make notes of common errors made by the learners.

## 112 Associative property and integers

## Objectives

- Recognise and use the associative property of addition for integers


## Dictionary

Integer: any whole number, positive or negative and including zero
Associative: In any operation of addition or multiplication the manner in which pairs of numbers are grouped does not matter. In other words the order in which you add or multiply does not matter. Subtraction and division are not associative.
E.g. $(4+5)+6=(6+5)+4$
$(4 \times 5) \times 6=(6 \times 5) \times 4$

Introduction
104



Use the associative property to calculate the following
Answers:
a. $[(-6)+(4+2)]=[(-6+4)+2]$ $-6+6=-2+2$ $0=0$
b. $[3+7+(-5)]=[(3+7)+(-5)]$
$3+2=10-5$
$5=5$
c. $[(6+4)+(-2)]=[6+(4+(-2)]$
$10-2=6+2$
$8=8$
d. $[(-3)+(7+5)]=[(-3)+7)+5]$
$-3+12=4+5$
$9=9$
e. $[(-4)+(6+2)]=[(-4+6)+2]$ $-4+8=2+2$ $4=4$
f. $[3+((-7)+5)]=[(3+(-7))+5]$ $3+(-2)=(3-7)+5$ $3-2=-4+5$ $1=1$

## 112 Associative property and integers continued

g. $[(-9)+(3+11)]=[(-9+3)+11]$
h. $[(12+13)+(-10)]=[12+(12+(-10)]$ $25-10=12+3$ $15=15$
i. $[(-3)+(9+11)]=[(-3)+9+11]$ $-3+20=6+11$ $17=17$
j. $[(-12)+(13+10)]=[-12+13)+10]$
$-12+23=1+10$
$11=11$
Show that the associative property for addition holds for integers.
Answers:
a. $(a+b)+c=a+(b+c)$
If: $a=4$
$b=-5$
$c=3$
$(4+(-5))+3=4+(-5+3)$
$-1+3=4+(-2)$
-
$7=7$
b. $(a+b)+c=a+(b+c)$
If: $a=2$
$b=9$
$c=-4$
$(2+9)+(-4)=2+(9+(-4))$
$11-4=2+(9-4)$
$7=2+5$
$-9+14=-6+11$
$-9+14=-6+11$
$5=5$
$5=5$

## 113 Integers: distributive property and integers

## Objectives

- Recognize and use the distributive property of integers


## Dictionary

Integer: any whole number, positive or negative and including zero Distributive property: the property of number that you get the same answer when you multiply a number by a group of numbers added together as when you do when you multiply each of those numbers separately and then add the products together


## Introduction



Use the distributive property to calculate the sums. Before you calculate highlight or underline the distributed number.

Answers:
a. $-4 \times(2+1)$
$-4 \times 3=(-4 \times 2)+(-4 \times 1)$
$-12=-8+-4$
$-12=-12$
c. $4 \times(-2+1)$
$4 x-1=(4 \times-2)+(4 \times 1)$
$-4=-8+4$
$-4=-4$
e. $4 \times(2+-1)$
$4 \times 1=(4 \times 2)+(4 \times-1) 4$
$4=8+-4$
$4=4$
g. $(-3 \times 2)+(-3 \times 4)$
$-6+(-12)=-3(2+4)$
$-6-12=-3(6)$
$-18=-18$
i. $(8 \times-4)+(8 \times 2)$
$-32+16=8(-4+2)$
$-16=8(-2)$
$-16=-16$
b. $-5 \times(3+6)$
$-5 \times 9=(-5 \times 3)+(-5 \times 6)$
$-45=-15+-30$
$-45=-45$
d. $5 \times(-3+6)$ $5 \times(3)=(5 x-3)+5 \times 6)$
$15=-15+30$
$15=15$
f. $5 \times(3+-6)$ $5 x-3=(5 \times 3)+(5 x-6)$
$-15=15+-30$
$-15=-15$
h. $(-7 \times 1)+(-7 \times 4)$
$-7+(-28)=-7(1+4)$
$-7-28=-7(5)$
$-35=-35$

## 113 Integers: distributive property and integers continued

Substitute and calculate. Answers:
a. $a \times(b+c)$ if $a=2, b=-3, c=-5$

$$
\begin{aligned}
& a \times(b+c)=(a \times b)+(a \times c) \\
& 2 \times(-3+(-5))=(2 \times-3)+(2 \times-5) \\
& -4 \times 4=-6+-10 \\
& -16=-16
\end{aligned}
$$

b. $a \times(b+c)$ if $a=-7, b=2, c=3$

$$
\begin{aligned}
& a \times(b+c)=(a \times b)+(a \times c) \\
& -7 \times(2+3)=(-7 \times 2)+(-7 \times 3) \\
& -7 \times 5=-14+-21 \\
& -35=-35 \\
& \hline
\end{aligned}
$$

e. $m \times(n+p)$ if $m=3, n=2, p=-11$

```
m\times(n+p)=(m\timesn)+(m\timesp)
3\times(2+-11)=(3\times2)+(3\times-11)
3x-9=6 + (-33)
-27=-27
```

f. $(m \times n)+(m \times p)$ if $m=7, n=8, p=-9$

$$
\begin{aligned}
& (m \times n)+(m \times p)=m \times(n+p) \\
& (7 \times 8)+(7 \times(-9))=7 \times(8+(-9)) \\
& 56+(-63)=7 \times(-1) \\
& -7=-7
\end{aligned}
$$

c. $a \times(b+c)$ if $a=1, b=-8, c=2$

107


```
Make use of the distributive property to wite your own equation for:
a=-4,b=5 and c=11
```

$1 \times(-8+2)=(1 \times(-8))+(1 \times 2)$
$1 \times-6=-8+2$
$-6=-6$
d. $(a \times b)+a+c)$ if $a=3, b=-10, c=5$

```
a\times(b+c)=(a\timesb)+(a\timesc)
3\times(-10+5)=(3\times-10)+(3\times5)
3\times-5=-30+15
-15=-15
```

Answer: A possible answer.
$c \times(a+b)$
$=11 \times(-4+5)$
$=(11 \times-4)+(11 \times 5)$
$=-44+55$
$=11$

## 114 Number patterns: constant difference and ratio

## Objectives

- Investigate and extend numeric and geometric patterns in physical or diagrammatic form in sequences involving a constant difference or ratio


## Dictionary

Number pattern: a list of numbers that follow a certain sequence or pattern, e.g. $3,6,9,12,15, \ldots$ (starts at 3 and adds 3 every time) Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: $2,4,8,16,32,64,128,256$, (starts at 2 and each following term is 2 times the term before) Constant Difference: an equal difference between terms in a sequence. Example: $3,6,9,12,15, \ldots$ (the constant difference is 3 ) Constant Ratio: the value of the ratio between each pair of numbers in a sequence remains the same - constant, e.g. as in the geometrical sequence: $2,4,8,16, \ldots$ (the ratio $2: 4=4: 8=8: 16$ is constant)

## Introduction

108



Describe each pattern.
a.

------- +1 \{100;101; 102; 103\}
.-.......... -4 \{114; 110; 106\}
-_- -1 \{108; $107 ; 106 ; 105 ; 104\}$
d.


## 114 Number patterns: constant difference and ratio continued



Example: $-12,-48,-192,-768 \quad-12 \times 4=-48,-48 \times 4=-192,-192 \times 4=-768$
Multiplying the previous number by 4


Answers:
a. $-7,-21,-63,-189$ Multiplying the previous number by -3
b. $-4,-44,-484,-5324$ Multiplying the previous number by 11


c. $-11,-66,-396,-2376$ Multiplying the previous number by 6


d. $2,-8,32,-128$ Multiplying the previous number by -4

e. 9, $72,576,4608$ Multiplying the previous number by 8

## 115 Number patterns: neither constant difference nor a constant ratio

## Objectives

- Investigate and extend numeric patterns in physical or diagrammatic form in sequences involving a constant difference or ratio


## Dictionary

Number pattern: a list of numbers that follow a certain sequence or pattern, e.g. 3, 6, 9, 12, 15, ... (starts at 3 and adds 3 every time) Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: $2,4,8,16,32,64,128,256$, .. (starts at 2 and each following term is 2 times the term before) Constant Difference: an equal difference between terms in a sequence. Example: $3,6,9,12,15, \ldots$ (the constant difference is 3 ) Constant Ratio: the value of the ratio between each pair of numbers in a sequence remains the same - constant, e.g. as in the geometrical sequence: $2,4,8,16, \ldots$ (the ratio $2: 4=4: 8=8: 16$ is constant)
Neither a constant difference nor a constant ratio: there is no constant difference or constant ratio in a sequence, e.g. $2,3,5,8,11, \ldots$ (the difference increases by 1 each time: $+1,+2,+3,+4, \ldots$ )

## Introduction

110

Describe the following: $-1,-2,-4,-7,-11,-16$ What will the next three terms be, using the identified rule This pattern has neither a constant difference nor a const your own words as "increasing the difference between constatio. It can be described in "subtracting 1 more than what he difference between consecutive terms by 1 each time" or three terms will be $-22,-29,-37$. sue 1 .


## 115 Number patterns: neither constant difference nor a constant ratio cont...

What will the value of the tenth pattern be? Answers:
a. 102 (The sequence grows by adding the difference between the previous two terms plus 2.) [The rule is $n^{2}+2$.]
b. 110 (The sequence grows by adding the difference between the previous two terms plus 2.) [ [The rule is $n^{2}+n$ or $n(n+1)$.]
c. 1023 (The sequence grows by adding double the difference between the previous two terms to the previous term). [The rule is: $2^{n}-1$.]
d. 55 (Square the position number and minus the previous term.) [The rule is $\frac{n(n+1)}{2}$.]
e. 919 (Cube the position number and minus the square of the previous position number.) [The rule is $n^{3}-(n-1)^{2}$.]


What will the value of the term be? Complete the table. Mark the one or ones where the sequence is neither a constant difference nor a constant ratio.
a. 500 (Add 25 to the previous term; Rule $=n \times 25$ ) [This is a constant difference.]
b. -416 (Add -4 to the previous term; Rule $=n \times-4$ ) [This is a constant difference.]
c. $205379\left(\right.$ Rule $\left.=n^{3}\right)$ [THIS IS NOT A CONSTANT DIFFERENCE NOR CONSTANT RATIO.]
d. 468 (Add 13 to previous term; Rule $=n \times 13$ ) [This is a constant difference.]
e. 609 (Add 21 to previous term; Rule $=n \times 21$ ) [This is a constant difference.]

Answers:
a. Thabo will need 225 bricks on day four as he increases the number of bricks by 50 each day. Rule for this is $n=(n \times 50)+25$.
b. Ravi will draw 32 figures (each day he doubles the number of figures). [A rule for this is $n=2^{n}$.]
c. Lisa will read 96 pages on Thursday (each day she reads an extra 10 pages). [Rules for this are $\mathrm{n}=(n \times 10)+46$ or $10 n+6$.]
d. Thandi will cut 21 roses from the fifth plant (she increases the number she cuts in multiples of 2 starting at 1 ). [A rule for this is $n=n^{2}-1+10$.]

## 116 Number sentences and words

## Objectives

- Describe and justify the general rules for observed relationships between numbers in own words


## Dictionary

Number Sentence: This is a mathematical sentence made up of numbers and symbols instead of words. The term is used in mathematics education as a way of asking students to write down a simple equation using numbers and mathematical symbols, so, e.g. $7+$ $5=12$ is a number sentence. It is not the same thing as a word problem. Word problem: a mathematical problem expressed in words but which needs to be translated into mathematical numbers and symbols to be solved, e.g. Tasha had twenty more books than Ben, but six less than Mandla, who had thirty-two. How many books did Ben have? This word problem is then translated into a number sentence [32-6-20 = 10].

## Introduction

Look at the following sequences:
i. Calculate the $20^{\text {th }}$ term using a number sentence.
ii. Describe the rule in your own words.

112

## Example: Number sentence: -6,-10, -14,-18

Rule in words: ( $-4 \times$ the position of the term) -2 .


To make it easier to write down rules for number sequences we often use these abbreviations:
$T \boldsymbol{n}$ is the term (the value of the term)
$n$ is the term number (the position of the term)
Example:
For the rule for the number sequence $\{3,5,7,9, \ldots\}$ we would write:
$T n=2 n+$
The value of the " 5 th term" would then be
$T_{5}=2 n+1$
$T_{5}=(2 \times 5)+1=11$

a. Number sentence: $8,14,20,26$	b. Number sentence: $0,-3,-6,-9$
i. $\begin{aligned} & T_{n}=6(n)+2 \\ & T_{1}=6(1)+2=8 \\ & T_{20}=6(n)+2=6(20)+2=122 \end{aligned}$	$\begin{aligned} & T_{n}=-3 n+3 T=-3(1)+3 \\ & T_{1}=-3+3=0 \\ & T_{20}=-3 n+3 \\ & =(-3)(20)+3-60+3=-57 \end{aligned}$
ii. ( $6 \times$ position of term) plus 2 (or Add 6 to the value of the previous term)	( $3 \times$ position of term) plus 3 (or Add - 3 to the value of the previous term)

c. Number sentence: $-4,-5,-6,-7$
. $T_{n}=-1 n-3$ $T_{1}=-1(1)-3=-1-3=-4$ $T_{20}=-1(20)-3=-20-3=-23$
d. Number sentence:
$-2,3,8,13$
$T_{n}=5 n-7$
$T_{1}=5(1)-7=-2$
$T_{20}=5(20)-7=100-7=93$
ii. $(-1 \times$ position of term) minus 3 (or Add -1 to the value of the previous term)
( $5 \times$ position of term) minus 7 (or Add 5 to the value of the previous term)

## 116 Number sentences and words continued



$113$	Number sentence: $7,5,3,1$	j. Number sentence: $2,4,6,8$
	$\begin{aligned} & T_{n}=-2 n+9 \\ & T_{1}=-2(1)+9=7 \\ & T_{20}=-40+9=-31 \end{aligned}$	$\begin{aligned} & T_{n}=2 n \\ & T_{1}=2(1)=2 \\ & T_{20}=2(20)=40 \end{aligned}$
	( $-2 \times$ position of term) plus 9 (or Add -2 to the value of the previous term)	$2 \times$ position of term (Add 2 to the value of the previous term)
	Problem solving	
	Tshepo earns R25 per week for washing his father's motor car. If he saves R5,50 the first week, R7,50 the second week and $\mathrm{R9} 9.50$ the third week, how much will he save in the fourth week if the pattern continues?   Calculate the total amount he saves over 4 weeks. Write a rule for the number sequence.	
	Answer:   Week $4=\mathrm{R} 11,50$ (Rule is add R 2 each week)   Four weeks total $=5,50+7,50+9,50+11,50=R 34$	
Reflection questions Did learners meet the objectives?		
	nmon errors   notes of common errors mad	$y$ the learners.

## 117 Number sequences: describe a pattern

## Objectives

- Describe and justify the general rules for observed relationships between numbers in own words
- Investigate and extend numeric and geometric patterns looking for relationships between numbers, including patterns in tables


## Dictionary

Number pattern: a list of numbers that follow a certain sequence or pattern, e.g. 3, 6, 9, 12, 15, ... (starts at 3 and adds 3 every time) Arithmetic sequence: an arithmetic progression or arithmetic sequence where the sequence of numbers is such that the difference between the consecutive terms is constant, e.g in the sequence $1,3,5,7,9, \ldots$ the common difference is 2
Geometric sequence: a number sequence made by multiplying or dividing by the same value each time, e.g.: $2,4,8,16,32,64,128,256$ the difference between terms is not constant (starts at 2 and each following term is 2 times the term before)

## Introduction

Describe the sequence in different ways using the template provided.
a. $-1,2,5,8$
i.

iii. Where n is the position of the term. First term: 3(1) - 4 = -1
Second term: 3(2)-4=2 Third term: 3(3)-4 = 5

$$
n^{\text {th }} \text { term: } 3 n-4
$$

Fourth term: 3(4)-4=8
b. $3,5,7,9$
i.

iii. Where $n$ is the position of the term.

First term: 2(1) $+1=3$
Second term: $2(2)+1=5$
Third term: 2(3) $+1=7$
Fourth term: $2(4)+1=9$
$n^{\text {th }}$ term: $2 n+1$

## Topic: Numeric and geometric patterns Content links: R9, 65-71, 115-116 Grade 8 links: 27-28, 105, 107-108 Grade 9 links: 27-28, 65-69

## 117 Number sequences: describe a pattern continued


iii. Where $n$ is the position of the term. First term: -8(1) $-3=5$ Second term: -8(2)-3=5 Third term: $-8(3)-3=5$
Fourth ferm: $-8(4)-3=5$
d. $16,22,28,34$
i.

iii. Where n is the position of the term.

First term: 6(1) $+10=16$
Second term: $6(2)+10=22$
Third term: $6(3)+10=28$
$n^{\text {th }}$ term: $6 n-10$
Fourth term: $6(4)+10=34$

iii. Where n is the position of the term. First term: $-5(1)+1=-4$ Second term: $-5(1)+1=-9$ Third term: $-5(1)+1=-14$

$$
n^{\text {th }} \text { term: }-5 n+1
$$

$$
\text { Fourth term: }-5(1)+1=-19
$$

117
Problem solving
Write the rule for the number sequence: $-3,-5,-7,-9$

Answer: Subtracting 2 from the previous term or rule $-2 n-1$
Reflection questions
Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 118 Input and output values

## Objectives

- Determine, interpret and justify equivalence of different descriptions of the same relationship or rule presented in flow diagrams, by formulae, number sentences and verbally
- Determine input values, output values or rules for patterns and relationships using flow diagrams and formulae


## Dictionary

Input values: A number that is inputted into the flow diagram that determines the output value. Example: $15+5=20.15$ is the input value.
Output values: A number value that is the result of the flow diagram's input and process. For Example see diagram on the right.


## 118 Input and output values continued

Use the given rule to calculate the value of $b$. Answers:
a.


$$
\begin{aligned}
& b=-a \times 6 \\
& b=-6 \times 6=-36 \\
& b=-15 \times 6=-90 \\
& b=-8 \times 6=-48 \\
& b=-2 \times 6=-12 \\
& b=-17 \times 6=-102
\end{aligned}
$$

b.

$b=a \times 15$
$b=2 \times 15=30$
$b=8 \times 15=120$
$b=12 \times 15=180$
$b=20 \times 15=300$
$b=29 \times 15=435$


$$
\begin{aligned}
& y=-x+9 \\
& y=-7+9=2 \\
& y=-8+9=1 \\
& y=-6+9=3 \\
& y=-2+9=11 \\
& y=-16+9=25
\end{aligned}
$$


$s=r+11$
$s=4+11=15$
$s=7+11=18$
$s=9+11=20$
$s=20+11=31$
$s=5+11=16$

## 118 Input and output values continued

Topic: Input and output values Content links: R9, 48-51, 72, 119
Grade 8 links: R7, 28, 106, 109 Grade 9 links: R8, 29-36, 70-80


Use the given rule to calculate the variable. Answers:


## 

## Objectives

- Determine, interpret and justify equivalence of different descriptions of the same relationship or rule presented by formulae, number sentences, in tables and verbally


## Dictionary

Input values: A number that is inputted into the flow diagram that determines the output value. Example: $15+5=20.15$ is the input value.
Output values: A number value that is the result of the flow diagram's input and process. For Example see diagram on the right.

Solve $m$ and $n$ using the given rule.
a. $y=3 x-1$

$x$	2	4	6	$n$	10	20
$y$	5	11	17	23	29	$m$

$$
\begin{aligned}
& m=59 \\
& n=8
\end{aligned}
$$

b. $y=-2 x+6$

$x$	1	2	3	4	5	$n$
$y$	4	2	0	$m$	-4	-174

$$
\begin{aligned}
& m=-2 \\
& n=8
\end{aligned}
$$

c. $y=-4 x-2$

$x$	3	4	5	6	$n$	10	100
$y$	14	-18	-22	-26	-30	-42	$m$

$m=-402$
$n=7$
d. $y=x+2$

$x$	2	$n$	4	5	16	17
$y$	4	5	6	7	$m$	19

$$
\begin{aligned}
& m=18 \\
& n=3
\end{aligned}
$$

e. $t=-8 s+2$

$s$	1	2	3	$n$	5	6	7
$t$	-6	-14	-22	-30	$m$	-46	-54

## 119 More input and output values <br> MOIE M OU' AnO OU'PU'VGUES COnt... Grade 8 links: R7, 28, 106, 109 Grade 9 links: R8, 29-36, $70-80$

f. $q=7 p-7$

$p$	1	5	10	20	$n$	100
$q$	0	28	$m$	133	168	693

$$
\begin{aligned}
& m=63 \\
& n=25
\end{aligned}
$$

What is the value of $m$ and $n$ ?
a.


> Rule: $-3 n+1$ $m=74$
> $n=32$
b.

c.

$\boldsymbol{x}$	1	2	3	4		10	15	$n$
$\boldsymbol{y}$	-9	-11	-13	-15		-27	$m$	-47

d.

$\boldsymbol{x}$	1	2	3	4		7	$n$	46
$\boldsymbol{y}$	4	5	6	7		10	13	$m$

e.

$\boldsymbol{x}$	1	2	3	4		6	10	$n$
$\boldsymbol{y}$	-1	-7	-13	-19		-31	$m$	-61

Rule: $-6 n+5$ $m=-55$
$n=11$
f.

$\boldsymbol{x}$	1	2	3	4		$n$	41	70
$\boldsymbol{y}$	-12	-14	-16	-18		-70	$m$	-150

Rule: $-2 n-10$ $m=-92$ $n=30$
a. What is the tenth term? $4 \times-5,5 \times-5,6 \times-5$
b. If $y=5 x-8$ and $x=2,3,4, \ldots$, draw a table to show it.
Answer:
a. $13 \times-5$
b.

$\boldsymbol{x}$	2	3	4	5		6	7
$\boldsymbol{y}$	2	7	12	17		22	27

Reflection questions
Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 120 Algebraic expressions

Topic: Algebraic expressions Content links: 74-76, 121-122 Grade 8 links: R8, 29-36, 39-43 Grade 9 links: R8, 29-36, 70-80, 86-87

## Objectives

- Identify variables and constants in given formulae or equations
- Recognize and interpret rules or relationships represented in symbolic form

Dictionary
Algebraic Expressions: An expression that contains variables in forms of algebra. Example: $2 a+8$


Say if it is an expression or an equation. Answers:
a. $-4+8$
b. $-9+7=-2$
C. $-5+10$

Expression
Equation Expression
d. $-8+4=-4$
Equation
e. $-7+5$
f. $-15+5-10$ Expression Expression

Describe the following: Answer:
a. $-8+2=-6$
$-8+2$ is an expression that is equal to the value on the right-hand side, -6 .
$-8+2=-6$ is an equation. The left-hand side of an equation equals the right hand side.
b. $-15+9=-6$
$-15+9$ is an expression that is equal to the value on the right-hand side, -6 .
$-15+9=-2$ is an equation. The left-hand side of an equation equals the right hand side.
C. $-11+9=-2$
$-11+9$ is an expression that is equal to the value on the right-hand side, -2 .
$-11+9=-2$ is an equation. The left-hand side of an equation equals the right hand side.
d. $-5+3=-2$
$-5+3$ is an expression that is equal to the value on the right-hand side, -2 .
$-5+3=-2$ is an equation. The left-hand side of an equation equals the right hand side.

## 120 Algebraic expressions cont...

Topic: Algebraic expressions Content links: 74-76, 121-122 Grade 8 links: R8, 29-36, 39-43 Grade 9 links: R8, 29-36, 70-80, 86-87
e. $-8+1=-7$
$-8+1$ is an expression that is equal to the value on the right-hand side, -7 .
$-8+1=-7$ is an equation. The left-hand side of an equation equals the right hand side.
f. $-4+3=-1$
$-4+3$ is an expression that is equal to the value on the right-hand side, -1 .
$-4+3=-1$ is an equation. The left-hand side of an equation equals the right hand side.

Make use of the variable " $a$ " and integers to create 10 expressions of your own.
Answers: Examples of possible answers
$-12+a$
$a+(-12)$
$a+4$
$a-8$
$a+(-5)$
$-15+a$
$a+20$
$a+13$


Make use of the variable " $\alpha$ " and integers to create 10 equations of your own.
Answers: Examples of possible answers

$a+2=12$	$a-7=15$	$a+10=20$
$a-5=-15$	$a+3=8$	$a+7=-10$
$a+18=-15$	$a+7=-8$	$a+2=-18$

$a+3=8$
$a+7=-10$
$a+2=-18$


Say if it is an expression or an equation.
Answers:
a. $-9+a=-2$

C. $-5+a=-3$
Equation
d. $-18+a$
Expression

f. $-7+a$

Expression

125

$$
\begin{aligned}
& \text { Problem solving } \\
& \text { Create } 10 \text { examples of algebraic expressions with a variable and a constant. From these create } \\
& \text { algebraic equations and solve them. }
\end{aligned}
$$

Answers: Examples of possible answers

Expression	Equation	Solution
$a+7$	$a+7=25$	$a=25-7=18$
$a-2$	$a-2=18$	$a=18+2=20$
$a-17$	$a-17=20$	$a=20+17=37$
$a+(-3)$	$a+(-3)=8$	$a=8+3=11$
$a-15$	$a-15=17$	$a=17+15=32$
$a-9$	$a-9=22$	$a=22+9=31$
$a+15$	$a+15=30$	$a=30-15=15$
$a-4$	$a-4=7$	$a=7+4=11$
$a+18$	$a+18=35$	$a=35-18=17$
$a-20$	$a-20=25$	$a=25+20=45$

## 121 The rule as an expression

Topic: Algebraic expressions Content links: 74-76, 120, 122 Grade 8 links: R8, 29-36, 39-43 Grade 9 links: R8, 29-36, 70-80, 86-87

## Objectives

- Identify variables and constants in given formulae or equations
- Recognize and interpret rules or relationships represented in symbolic form


## Dictionary

Algebraic Expressions: An expression that contains variables in forms of algebra. Example: $2 a+8$

## 126

Introduction


## Answers

a. $9 ; 6 ; 3 ; 0 ;-3$;

Subtracting 3   from previous   term

b. 4; 10; 16; 22; 28;
Adding 6 to the
previous term
c. $7 ; 14 ; 21 ; 28 ; 35$;
Adding 7 to the previous term
d. $12 ; 24 ; 36 ; 48 ; 60$;
Adding 12 to the previous term
Adding 8 to the previous term

Adding 10 to the previous term
Describe the following sequence using an expression Answers:
a. $6 ; 8 ; 10 ; 12 ; 14$

b. $5 ; 11 ; 17 ; 23 ; 29$
$6 n-1$
c. $4 ; 13 ; 22 ; 31 ; 40$ 9n-
d. 8; 16; 24; 32; 40
$\square$
e. $15 ; 25 ; 35 ; 45 ; 55$
$10 n+5$
f. $4 ; 7 ; 10 ; 13 ; 16$ $3(n)+1$

## 121 The rule as an expression cont...

Topic: Algebraic expressions Content links: 74-76, 120, 122 Grade 8 links: R8, 29-36, 39-43 Grade 9 links: R8, 29-36, 70-80, 86-87


Show what the rule means by completing the table. Answers:
Example: For the following number sequence the rule $-2 n-1$ means:

( -3 is the first term, -5 is the second term, -7 is the third term, etc.)
a. Position in sequence Term

1	2	3	4	5	$n$
10	13	16	19	22	$3 n+7$

b. Position in sequence Term

c. Position in sequence Term

7	2	3	4	5	$n$
2	9	16	23	30	$7 n-5$

d. Position in sequence

7	2	3	4	5	$n$
-1	1	3	4	7	$2 n-3$

e. Position in sequence Term

1	2	3	4	5	$n$
8	17	26	35	44	$9 n-1$

f. Position in sequence

1	2	
24	37	50

## Wite a rule for the following: Problem solving <br> On the first day I spend R15, on the second day I spend R30, on the third day Ispend R45. How much On the first day 1 spend R15, on the second day Ispend R33 money do I spend on the tenth if this pattern continues? <br> Answer: Rule is $15 n$. Answer is R150. <br> I save R15 in January, R30 in February R45 in March. How much money will save in September if the pattern continues?

Answer: Rule is $15 n$. Answer is R135
Thabo sells one chocolate on Monday, three chocolates on Tuesday and five on Wednesday. How many chocolates will he sell on firiday if the pattern continues?
Answer: Rule is $2 n-1$. Answer is 9 chocolates. A farmer plants 2 rows of maize on the first day, 6 rows on the second day and 11 rows on the third day. How many rows must will he plant on the 12 th day if the pattern continues.
Answer: Rule is (value of the previous term) + (the difference between the previous two terms +1 ). A more complex rule is $\left.n^{2}+(5 n-2)\right) \div 2$. Answer is 101 rows
Bongi spends twenty minutes on the computer on day one, thirty minutes on day two and forty minutes Bond syy three. How much time will she spend on the computer on day nine if the pattern continues?

Answer: Rule is $10 n+10$. Answer is $10(9)+10=100=1$ hour 40 minutes.

Reflection questions
Did learners meet the objectives?

## 122 Sequences and algebraic expressions

## Objectives

- Identify variables and constants in given formulae or equations
- Recognize and interpret rules or relationships represented in symbolic form


## Dictionary

Number Sequence: A list of numbers that follow a certain sequence or pattern. Example: $3,6,9,12,15, \ldots$ starts at 3 and adds 3 every time Algebraic expression: a group of numbers made up of constants and variables, linked by operators, e.g. $2 a+8$

Introduction


Some texts use various abbreviations for sequences and terms
$n=$ the position of the term (1st, 2nd, etc.)
$a=$ the sequence
So $a_{n}$ refers to term $n$ in the sequence $a$ Some people use these abbreviations:
$T$ = the sequence
$T_{n}=$ the term $n$ in the sequence $T$
$T_{n-1}=$ the previous term to term $n$
$T_{n+1}=$ the term after term $n$

Describe the following in words
Answers:
a. $-3 ;-12 ;-21 ;-30 ;-39$
Subtracting 9 from the
previous term.
b. $-6 ;-13 ;-20 ;-27 ;-34$
Subtracting 7 from the previous term.
c. $-3 ;-5 ;-7 ;-9 ;-11$

Subtracting 2 from the previous term.
e. $-7 ;-8 ;-9 ;-10 ;-11$

Subtracting 1 from the
previous term.
d. $6 ;-4 ;-14 ;-24 ;-34$

Subtracting 10 from the previous term.
f. $-8 ;-12 ;-16 ;-20 ;-24$

Subtracting 4 from the previous term.
g. $-14 ;-17 ;-20 ;-23 ;-26$

Subtracting 3 from the
previous term
h. $-19 ;-21 ;-23 ;-25 ;-27$

Subtracting 2 from the previous term.
j. $-1 ;-6 ;-11 ;-16 ;-21$

Subtracting 5 from the previous term.

## 122 Sequences and algebraic expressions continued



Describe the following sequence using an expression. Answer:


e. $-16 ;-22 ;-28 ;-34 ;-40$
$-6 n-10$

g. $4 ;-4 ;-12 ;-20 ;-28$
i. $-8 ;-18 ;-28 ;-38 ;-48$
b. $3,5,7,9,11, \ldots$
$2 n+1$
d. $-13 ;-17 ;-21 ;-25 ;-29$ $-4 n-9$
f. $9 ;-2 ;-13 ;-24 ;-35$
$-11 n+20$
h. $-3 ;-12 ;-21 ;-30 ;-39$ $-9 n+6$


Answers:
3; $-3 ;-9 ;-15 ;-21$

- Add -6 to the value of the previous term
- $-6 \times$ the position of the term $+9=-6 n+9$
- Value of first term $+(-6(n-1))$

5; 4; 3; 2; 1

- Add -1 to the value of the previous term
- $-1 \times$ position of the term $+6=-n+6$
- Value of first term $+(-1(n-1))$
$-14 ;-22 ;-30 ;-38 ;-46$
- Add -8 to the value of the previous term
- $-8 \times$ position of the term $-6=-8 n-6$
- Value of first term $+(-8(n-1))$

19; 7; $-5 ;-17 ;-29$

- Add -12 to the value of the previous term
- $-12 \times$ position of the term $+31=-12 n+31$
- Value of first term + $(-12(n-1))$
$-23 ;-30 ;-37 ;-44 ;-51$
- Add -7 to the value of the previous term
- $-7 \times$ position of the term $-16=-7 n-16$
- Value of first term + $(-7(n-1))$


## 123 <br> The algebraic equation

## Objectives

- Solve and complete number sentences by inspection and trial and improvement
- Analyse and interpret number sentences to describe problem situation


## Dictionary

Algebraic expression: a group of numbers made up of constants and variables, linked by operators, e.g. $x-6+8$
Algebraic equation: a statement that two expressions (one of which may be a constant) have the same value, e.g. $x-6+8=4$

## Introduction

130

	Solving equations
	Because an equation represents a balanced scale, it can also be manipulated like one.
	Initial equation is $x-2=-5$
	Add 2 to both sides $x-2+2=-5+2$
	Answer $x=-3$

## 123 The algebraic equation continued

Example: | $x+5=-2$ |
| :--- |
| $x+5-5=-2-5$ |
| $x=-7$ |

Answer: $\text { a. } \begin{aligned} & x+7=-5 \\ & x+7-7=-5-7 \\ & x=-12 \end{aligned}$	$\begin{aligned} \text { b. } & x+3=-1 \\ & x=-4 \end{aligned}$
$\begin{array}{ll} \text { c. } \begin{array}{l} x+15=-12 \\ \\ x+15-15=-12-15 \\ \\ x=-27 \end{array} \end{array}$	
$\text { e. } \begin{aligned} & x+23=-20 \\ & x+23-23=-20-23 \\ & x=-43 \end{aligned}$	$\text { f. } \begin{array}{ll} x+28=-13 \\ & x+28-28=-13-28 \\ & x=-41 \end{array}$
$\text { g. } \begin{aligned} & x+10=-2 \\ & x+10-10=-2-10 \\ & x=-12 \end{aligned}$	h. $\begin{aligned} & x+33=-20 \\ & x+33-33=-20-33 \\ & x=-53 \end{aligned}$
$\text { i. } \begin{array}{ll} x+5=-10 \\ & x+5-5=-10-5 \\ x=-15 \end{array}$	

$x=-15$

$$
\begin{aligned}
& 3 \\
& \text { Solve for } x \\
& \text { Answer } \\
& \text { b. } x-7=-12 \\
& x-7+7=-12+7 \\
& x=-5 \\
& \text { c. } x-2=-5 \\
& x-2+2=-5+2 \\
& \text { d. } x-5=-15 \\
& x-5+5=-15+5 \\
& x=-3 \\
& x=-10 \\
& \text { e. } x-12=-20 \\
& x-12+12=-20+12 \\
& x=-8 \\
& x-10=-25 \\
& x-10+10=-25+10 \\
& x=-15 \\
& \text { g. } x-23=-34 \\
& x-23+23=-34+23 \\
& x=-11 \\
& \text { h. } x-2=-7 \\
& x-2+2=-7+2 \\
& x=-5 \\
& \text { i. } x-30=-40 \\
& x-30+30=-40+30 \\
& x=-10 \\
& \text { Problem solving } \\
& \text { Write an equation for the following and solve it: } \\
& \text { Five times a certain number minus four equals ninety-five } \\
& 5 x-4=95 \\
& 5 x-4+4=95+4 \\
& 5 x=99 \\
& x=\frac{99}{5} \quad x=19 \frac{4}{5}
\end{aligned}
$$

## 124 More on the algebraic equation

Topic: Algebraic equations Content links: 78-79, 123, 125 Grade 8 links: R8, 29-44 Grade 9 links: 37-38, 72-74, 81-85

## Objectives

- Solve and complete number sentences by inspection and trial and improvement
- Write a number sentence to describe a given situation


## Dictionary

Algebraic expression: a group of numbers made up of constants and variables, linked by operators, e.g. $x-6+8$
Algebraic equation: a statement that two expressions (one of which may be a constant) have the same value, e.g. $x-6+8=4$

132

## Introduction


Solve for $x$.
Answers:
a. $-5 x=60$
$\frac{-5 x}{-5}=\frac{60}{-5}$
$x=-12$
b. $-2 x=24$
$\frac{-2 x}{-2}=\frac{24}{-2}$
$x=-12$

$$
\begin{aligned}
& \frac{-12 x}{-12}=\frac{48}{-12} \\
& x=-4
\end{aligned}
$$

e. $-15 x=60$ $\frac{-15 x}{-15}=\frac{60}{-15}$
f. $-9 x=54$
$\frac{-9 x}{-9}=\frac{54}{-9}$
$x=-6$
g. $-5 x=10$
$\frac{-5 x}{5}=\frac{10}{-5}$
$x=-2$
h. $-12 x=36$
i. $-8 x=64$
$\frac{-8 x}{-8}=\frac{64}{-8}$
$x=-8$

## Solve for $x$.

Answers:
a. $-2 x-5=15$

$$
\begin{aligned}
& -2 x-5+5=15+5 \\
& \frac{-2 x}{-2}=\frac{20}{-2} \\
& x=-10
\end{aligned}
$$

b. $-9 x-4=32$
$-9 x-4+4=32+4$
$\frac{-9 x}{-9}=\frac{36}{-2}$
$x=-4$

More on the algebraic equation cont...

c. $\begin{aligned} & -3 x-3=18 \\ & -3 x-3+3=18+3 \\ & \frac{-3 x}{-3}=\frac{21}{-3} \\ & x=-7 \\ & \text { e. }-8 x-4=12 \\ & \\ & -8 x-4+4=12+4 \\ & \frac{-8 x}{-8}=\frac{16}{-8} \\ & x=-2\end{aligned}$
g. $-12 x-5=55$
$-12 x-5+5=55+5$ $\frac{-12 x}{-12}=\frac{60}{-12}$
$x=-5$
i. $-2 x-2=18$
$-2 x-2+2=18+2$
$\frac{-2 x}{-2}=\frac{20}{-2}$
$x=-10$
d. $-3 x-2=22$
$-3 x-2+2=22+2$
$\frac{-3 x}{-3}=\frac{21}{-3}$
$x=-8$
f. $-20 x-5=95$
$-20 x-5+5=95+5$
$\frac{-20 x}{-20}=\frac{100}{-20}$
$x=-5$
h. $-7 x-3=25$
$-7 x-3+3=25+3$
$\frac{-7 x}{-7}=\frac{28}{-7}$
$x=-4$

$\frac{-3 x}{-3}=\frac{30}{-3}$
$x=-10$
$\frac{-2 y}{-2}=\frac{64}{-2}$
$y=-32$
i. $-5 b=15$
$b=\frac{15}{-5}$
$b=-3$

## Answers:

a. $-2 y=-12$
$\frac{-2 y}{-2}=\frac{12}{-2}$
$y=6$
d. $-4 d=44$
$\frac{-4 d}{-4}=\frac{44}{-4}$
$d=-11$
g. $-9 m=108$
$m=\frac{108}{-9}$
$m=-12$
h. $-6 a=30$
$a=\frac{36}{-6}$
$x=-6$
j. $\quad-8 c=40$
$c=\frac{40}{-8}$
$c=-5$

## 125 More algebraic equations

Topic: Algebraic equations Content links: 78-79, 123-124 Grade 8 links: R8, 29-44 Grade 9 links: 37-38, 72-74, 81-85

## Objectives

- Determine the numerical value of an expression by substitution


## Dictionary

Algebraic expression: a group of numbers made up of constants and variables, linked by operators, e.g. $x-6+8$
Algebraic equation: a statement that two expressions (one of which may be a constant) have the same value, e.g. $x-6+8=4$

## Introduction

134

$$
\begin{array}{ll}
\text { If } y-y^{2}+1 \text {; calculate } y \text { when } x=-3 & \text { Test } \\
y=(-3)^{2}+1 & y=x^{2}+1 \\
y=9+1 & 10=(-3)^{2}+1 \\
y=10 & 10=9+1 \\
& 10=10
\end{array}
$$



125 More algebraic equations continued

Substitute and calculate.

Answers: Example: If $y=x^{2}+\frac{2}{x}$; calculate $y$ when $x=-4$

$$
\begin{aligned}
& y=(-4)^{2}+\frac{2}{-4} \\
& y=16+\frac{1}{-2} \\
& y=15 \frac{1}{2}
\end{aligned}
$$

a. $y=x^{2}+\frac{2}{x} ; x=-4$
b. $y=x^{2}+\frac{10}{x} ; x=15$
$y=(-4)^{2}+\frac{2}{-4}$
$y=(15)^{2}+\frac{10}{15}$
$=16-\frac{1}{2}$
$=15 \frac{1}{2}$
$=225+\frac{2}{3}$
$=225 \frac{2}{3}$
c. $y=x^{2}+\frac{6}{x} ; x=-6$
d. $y=x^{2}+\frac{5}{x} ; x=-10$
$y=(-6)^{2}+\frac{6}{-6}$
$y=(-10)^{2}+\frac{5}{-10}$
$=36-1$
$=100-\frac{1}{2}$
$=35$
$=99 \frac{1}{2}$

$$
\text { e. } \begin{aligned}
y & =x^{2}+\frac{1}{x} ; x=-2 \\
y & =(-2)^{2}+\frac{1}{-2} \\
= & 4-\frac{1}{2} \\
= & 3 \frac{1}{2}
\end{aligned}
$$

$$
\text { f. } \begin{aligned}
& y=x^{2}+\frac{4}{x} ; x=-16 \\
& y=(-16)^{2}+\frac{4}{-16} \\
&=256-\frac{1}{4} \\
&= 256 \frac{3}{4}
\end{aligned}
$$

g. $y=x^{2}+\frac{3}{x} ; x=-9$
$y=(-9)^{2}+\frac{3}{-9}$
$=81-\frac{1}{3}$
$=80 \frac{2}{3}$
i. $y=x^{2}+\frac{2}{x} ; x=-2$
$y=(-2)^{2}+\frac{2}{-2}$
$=4-1$
$=3$

## 125 More algebraic equations continued

## Problem solving

a. What is the difference between the value of $y$ in $y=x^{2}+2$, if you first replace $y$ with 3 and then with -3 ? b. $y$ is equal to $x$ squared plus four divided by $x$. If $x$ is equal to eight. Substitute and calculate c. $y$ is equal to $p$ squared plus two divided by p. If $p$ is equal to four. Substitute and calculate. d. $y$ is equal to b squared plus five divided by b . If b is equal to 10 . Substifute and calculate. $e . y$ is equal to $m$ squared plus three divided by $m$. If $m$ is equal to four. Substitute and calculate. f. $y$ is equal to $n$ squared plus nine divided by $n$. If $n$ is equal to three. Substitute and calculate.

Answers:
a. $y=x^{2}+2=3^{2}+2=9+2=11$
$y=x^{2}+2=(-3)^{2}+2=9+2=11$
The difference $=0$
b. $y=x^{2}+\frac{4}{x} ; x=8$
$y=8^{2}+\frac{4}{8}=64+\frac{1}{2}=64 \frac{1}{2}$

> e. $y=m^{2}+\frac{3}{m} ; m=4$
> $y=4^{2}+\frac{3}{4}=16+\frac{3}{4}=16 \frac{3}{4}$
f. $y=m^{2}+\frac{9}{n} ; n=3$
$y=3^{2}+\frac{9}{3}=9+3=12$

Reflection questions
Did learners meet the objectives?


## Common errors

Make notes of common errors made by the learners.

## 126 Data collection

Topic: Collect, organize and summarise data Content links: R16, 127-128 Grade 8 links: R16, 92 Grade 9 links: R16, 123

## Objectives

- Design and use simple questionnaires to answer questions with: - yes/no type responses - multiple choice responses
- Pose questions relating to social, economic, and environmental issues in own environment
- Select appropriate sources for the collection of data


## Dictionary

Research: any gathering of data, information, and facts for the advancement of knowledge
Data: factual information (as measurement or statistics) used as a basis of reasoning, discussion, or calculation
Questionnaire: a research instrument consisting of questions and other prompts for the purpose of gathering information from respondents Hypothesis: This is an assumption or statement that might be true, which can then be tested. Example: the hypothesis that on average the boys in the class are taller than the girls can be tested.

## Introduction

Explain that the first stages of the data cycle are to develop the questions and decide how you are going to collect the data which answers these questions.

Example:
Before collecting any research data you need to know what question or questions you are asking.

A good way of starting is to come up with a hypothesis. A hypothesis is a specific statement or prediction. The research will determine whether it is true or false.

Here are some examples of a hypothesis:

- Everybody in Grade 7 owns a cell phone
- All Grade 7s understand square roots.
- All Grade 7s like junk food


Where would you look to find data to give you answers to questions a. to j. at the top of page 137?
Answer: Learner's own answers
Is it always possible to collect data directly from the source? Answer: No, it depends on the source you need to collect from.

In order to collect the data for Question 1, would you do primary or secondary research or both?
Answer: You would use both methods for the research, for example, primary research for question $b$. (such as a survey in the class), secondary research for question a. (using the internet or an encyclopedia)


Learners' own answers. Some possible answers are:
a. Learners in the school drink about a litre a day.
b. Using a simple questionnaire to gather primary data.
c. Check if there is any research on this on the internet. Ask at the tuck shop about the number of bottles of water sold a day.
e. How much water is drunk by the learners.
f. Yes.
g. Name? Grade? How much water do you estimate you drink at a time? How often do you drink water?
h. E.g. Name:

Grade:
How much water do you drink at time? Less than $250 \mathrm{ml} /$
Between 250 ml and $500 \mathrm{ml} /$ More than 500 ml
How often do you drink water? Less than 3 times a day/ Between 4 and 6 times a day/ More than 6 times a day Do you drink other drinks in addition to water? Yes/No

Renection questions
Did learners meet the objectives?


Common errors
Make notes of common errors made by the learners.

## 127 Organise data

## Objectives

- Organize (including grouping where appropriate) and record using:
- Stem and leaf displays
- Tallies
- Tables
- Group data into intervals


## Dictionary

Tallies: marks used in recording a number of acts or objects, most often in series of five, consisting of four vertical lines cancelled diagonally or horizontally by a fifth line
Stem and leaf display: a plot where each data value is split into a 'leaf' (usually the last digit) and a "stem" (the other digits). For example "32" would be split into "3" (stem) and "2" (leaf). The "stem" values are listed down, and the 'leaf' values are listed next to them. This way the "stem" groups the scores and each 'leaf" indicates a score within that group.

## Introduction

In the previous worksheet we looked at asking a question and collecting data. The next step in the data handling process is to organise the collected data.


[^1] keep track of counting.

127 Organise data continued

b. Compile a stem-and-leaf table of the recorded data. Answer:

Stem	Leaf
1	99
2	22344466677777778888999
3	000011

## 128 Summarise data

Topic: Collect, organize and summarise data Content links: R16, 127-128 Grade 8 links: R16, 93 Grade 9 links: R16, 124

## Objectives

- Summarize and distinguishing between ungrouped numerical data by determining the mode, mean, and median and identify the largest and smallest score in order to determine the spread of the data (range)


## Dictionary

Mode: the value that appears the most.
Mean: the total of the numbers divided by how many numbers are.
Median: the middle value.
Range: the difference between the biggest and the smallest value.

## Introduction

144
There are three different types of average that we
generally use to understand data:

Use data set below to calculate the range, mean, median and mode: $3,13,7,5,21,23,39,23,40,23,14,12,56,23,29$ Answers:
a. The range $56-3=5$
b. The mean $331 \div 15=22,1$
c. The median is 23
d. The mode is 23

## 128 Summarise data continued



## Objectives

- Critically read and interpret data represented in:
- bar graphs
- Words
- Draw a variety of graphs by hand/ technology to display and interpret grouped and ungrouped data on bar graphs


## Dictionary

A bar graph/chart: a graphical display of data using bars of different heights that can be used to show the relative quantities or sizes of many things, such as what type of cars people have, how many customers a shop has on different days and so on

## Introduction

148


Use the frequency table below to draw a bar graph. Use your bar graph and write three observations regarding the data represented in the graph. Answer: Possible observations are:grapes are the most popular fruit; kiwis and strawberries are the least popular; several fruit are equally popular


Critically read and interpret data represented in the bar graph. a. How many learners are in the class?

Answer: 22
b. Which method of transport is the most popular? Answer: car
c. Which method is the least popular? Answer: taxi
d. How many more learners use the bus than the taxi? Answer: 5-1 = 4 learners
e. Why do you think more learners use the bus than the taxi? Answer: More space and it may be cheaper
f. Do you think most learners live far from or close to the school? Answer: learners own answer. Ask the learners to explain.
g. What percentage of the learners use public transport?

$$
\text { Answer: } \frac{8}{22}=0,36 \times 100=36 \%
$$

Topic: Represent data Content links: None Grade 8 links: 96 Grade 9 links: 127


## 130 Double bar graphs

## Objectives

- Critically read and interpret data represented in double bar graphs and draw a variety of graphs by hand/ technology to display and interpret data (grouped and ungrouped) in them


## Dictionary

Double bar graph: A double bar graph shows two bars side by side that compare the quantities of two different but related things. Each bar on the graph represents a certain value, so you can easily see the difference between two related things .

## ntroduction




The results of your class exam and practical work is reflected in the table below.
a. Compile a frequency table using tallies.

Answer:

Range	Practical	Tally	Exam	Tally				
$30-40$	2	$\\|$	0					
$41-50$	3	$\\|\\|$	3	$\\|\\|$				
$51-60$	4	$\\|\\|\\|$	6	HH \|				
$61-70$	6	HH \|	3	$\\|\\|$				
$71-80$	4	$\\|\\|$	7	HH \|				
$81-90$	1	$\\|$	1	$\mid$				

b. Draw a double bar graph comparing the learners' practical marks with their exam marks.


Practical Frequency
Exam Frequency

## 130 Double bar graphs continued

c. Interpret your graph and write down five conclusions.

- All learners got a mark in the practical work
- No learner got less than $40 \%$ in the exam.
- $40 \%$ of learners got $70 \%$ and above in the exam
- $15 \%$ of learners failed the exam.
- Most learners did well in the class exam than in the practical.


## Do it by yourself

Use the data collected during the survey on learners' favourite subjects.
a. Compile a frequency table using tallies, spliting the different subjects between girls (green) and boys
(blue).
b. Draw a double bar graph using your frequency table, comparing the preferences of boys with those
c. Interpret your graph and write down at least five conclusions.
d. How do your conclusions compare with the previous problem-solving activity where we used the same data?

Name	Favourite   subject	Name	Favourite   subject
Peter	Maths	Ann	History
John	Arts	Ben	Maths
Mandla	History	Zander	Sciences
Bongani	Sciences	Betty	History
Nandi	Sciences	Lauren	Arts
David	Maths	Alice	Maths
Gugu	History	Veronica	Language
Susan	Arts	Jacob	Maths
Sipho	Maths	Alicia	History
Lebo	Maths	Thabo	Language

Answers:

Subject	No. of boys	Tally	No. of girls	Tally				
Maths	5	HH	2	$\\|$				
Art	1	$\\|$	2	$\\|$				
History	1	$\\|$	4	$\\|\\|\\|$				
Science	2	$\\|$	1	$\\|$				
Language	1	$\\|$	1	$\\|$				

b. Boys' and girls' favourite subjects
c. Learners's own interpretation and conclusions: Here is an example answer. In this class:

- Boys and girls have different favourite subjects
- The most popular for boys was Maths
- The most popular for girls was History
- Overall Maths was the favourite subject of the class
- Language was the least favourite subject


## Objectives

- Critically read and interpret data represented in histograms and draw a histogram with given intervals $\boldsymbol{y}$ to display and interpret data (grouped and ungrouped)


## Dictionary

Histogram: a graphical display of data using bars of different heights (or lengths) in different ranges


## Introduction

a. What is the mean, median, and the mode? Answers:
Mean: $557 \div 23=24,5 \quad$ Median: $26 \quad$ Mode: 37
b. Complete the frequency table. Make the bins 5 in size ranging from 11 to 40.

Range	Tally	Frequency			
$11-15$	HI II\\|	8			
$16-20$	$\\|\\|$	3			
$21-25$		0			
$26-30$	$\\|\\|\\|$	4			
$31-35$	$\\|$	2			
$36-40$	HH I	6			

c. Draw the histogram.


131 Histograms continued...


## 132 More about Histograms

## Objectives

- Draw a histogram by hand/ technology to display and interpret data (grouped and ungrouped) with given intervals


## Dictionary

Histogram: a graphical display of data using bars of different heights (or lengths) in different ranges

160

## Introduction

Part of the power of histograms is that they allow us to analyse extremely large sets of data by reducing them to a single graph that can show the main peaks in the data, as well as give a visual representation of the significance of the statistics represented by those peaks.

defined peak that is close to the media and the mean. While there are "outliers," hey are of relatively low frequency. Thus it in this data group are of low frequency.

These two histograms were made in an attempt to determine whether William Shakespeare's plays were actually written by Sir Francis Bacon. A researcher decided to count the lengths of the words in Shakespeare's and Bacon's writings. If the plays were written by Bacon the lengths of words used in these writings should be very similar.


a. What percentage of all Shakespeare's words are four letters long?
Answer: 24\%
b. What percentage of all Bacon's words are four letters long? Answer: 18\%
c. What percentage of all Shakespeare's words are more than five letters long?
Answer: 18\%

## 132 More about Histograms continued

d. What percentage of all Bacon's words are more than five letters long? Answer: 28\%
e. Based on these histograms, do you think that William Shakespeare was really just a pseudonym for Sir Francis Bacon? Explain. Answer: No. There is a different pattern, particularly in the number of one and two-letter words.

The two histograms show the sleeping habits of the teenagers at two different high schools. Maizeland High School is a small rural school with 100 learners and Urbandale High School is a large city school with 3500 learners.

c. Which high school has more students who sleep between nine and ten hours per night? Answer: Maizeland [40\% as against 20 \%]
d. Which high school has a higher median sleep time? Answer: Maizeland [8 hrs as against 7 hrs ]
e. Maizeland's percentage of students who sleep between eight and nine hours per night is $39 \%$ more than that of Urbandale. [Maizeland $77 \%$ and Urbandale $38 \%$, so the difference is $39 \%$. The Maizeland figure is 202,63\% larger than the Urbandale one.]


Write a short paragraph discussing what your two histograms reveal.
The age of winning actors is generally later than for actresses. Actresses tend to win in their 20s, actors in their 30s and 40s.

## Objectives

- Critically read, analyse, and represent data on a pie chart and answer questions on them


## Dictionary

Pie chart: A pie chart is a circular chart in which the circle is divided into sectors, the 'pie slices' that show the relative sizes of the data. They are useful to compare different parts of a whole amount

## Introduction



Answer the following questions.
Example: Look at this example of South Africa's National budget of 2008/9.

a. Will the sectors always be in percentage? Answer: No it can be in degrees.
b. Will it always add up to $100 \%$ ?

Answer: Yes
c. What was the biggest expense in the South African budget?
Answer: Education
d. What was the smallest expense in the South African budget?
Answer: Water and agriculture.

## 133 Pie charts continued

Topic: Represent data Content links: None Grade 8 links: 98 Grade 9 links: 130


The ingredients of a mushroom pizza are the following: Meat 75 g
Cheese 250 g
Crust 500 g
Tomato 125 g
Mushrooms 50 g
Draw a pie chart that shows the different ingredients. Answers:


Represent Butho's expenditure on a pie chart. Answers:

Expense	Value
Rent	300
Food	225
Transport	75

## Expenditure




Reflection questions
Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 134 Report data

Topic: Analyse, interpret and report data Content links: 134 Grade 8 links: 102 Grade 9 links: 134

## Objectives

- Summarize data in short paragraphs that includes: aim, hypothesis, plan, analysis (including appropriate summary statistics for the data (mean, median, mode and range), interpretation and conclusions


## Dictionary

Aim: the purpose or desired outcome that you hope to achieve by doing something
Hypothesis: This is a statement that might be true, which can then be tested. Example: the hypothesis that on average the boys in the class are taller than the girls can be tested
Plan: a document, programme or diagram that shows how to proceed Analysis: the careful examination, by looking at or breaking down the parts of something, to understand its structure or function
Interpretation: the process of making sense of numerical data that has been collected, analysed, and presented
Conclusion: a position or opinion or judgment reached after consideration
Appendices: Appendices are the sections at the end of a book that gives additional information on the topic explored in the contents of the text.
References: A reference is someone or something which is a source of information about a subject.


## 134 Report data continued

## c. Plan:

What data do you need? Answer: Number of learners favouring each colour.
Who will you get it from? Answer: From the students. How will you collect it? Answer: Through a questionnaire
How will you record it? Answer: On a tally sheet with the data then transferred to a frequency table.
How will you make sure the data is reliable? Answer: Choose a random sample.
Why? Give reasons for the choices you made. Answer: Need to make sure the data is representative and not biased.
d. Analysis:

Number (and percentage) of students who like each colour listed is used to draw a bar graph and a pie graph. Determine the most popular and unpopular colours. Check if blue is indeed the most popular colour (as was stated in the hypothesis).

## e. Conclusions:

Do your results agree with the hypothesis? Answer: Yes because most learners prefer blue as their favourite colour. How confident are you? Answer: Confident because it was a random sample and the question asked was simple. What went wrong? How did you deal with it? Answer: Nothing went wrong. What would you do differently if you did the research again? Answer: I would increase the sample size.

Topic: Analyse, interpret and report data Content links: 134 Grade 8 links: 102 Grade 9 links: 134

## f. Appendices

- Copy of questionnaire
- Instruction to data collector (including on how to get random sample)
- Tally sheet


## g. References

No secondary data was used.

Conclusion: Maths is the favourite subject among boys. History is the favourite subject among girls. Language is the list favoured subject.

## 135 Data handling cycle

Topic: Data handling Content links: R16 Grade 8 links: R16,103-104 Grade 9 links: R16, 135-137

## Objectives

- Collect, organise, record, represent, interpret, and make conclusions on a set of data


## Dictionary

Aim: the purpose or desired outcome that you hope to achieve by doing something
Hypothesis: This is a statement that might be true, which can then be tested. Example: the hypothesis that on average the boys in the class are taller than the girls can be tested.
Plan: a document, programme or diagram that shows how to proceed Analysis: the careful examination, by looking at or breaking down the parts of something, to understand its structure or function
Interpretation: the process of making sense of numerical data that has been collected, analysed, and presented
Conclusion: a position or opinion or judgment reached after consideration
Appendices: Appendices are the sections at the end of a book that gives additional information on the topic explored in the contents of the text.
References: A reference is someone or something which is a source of information about a subject.


## 135 Data handling cycle continued

Topic: Data handling Content links: R16 Grade 8 links: R16,103-104 Grade 9 links: R16, 135-137


Questions that might help you to plan:
a. What data do you need?

Answer: The length of the girls and boys' hand span.
b. Who will you get it from?

Answer: From the grade seven boys and girls in my class.
c. How will you collect it?

Answer: I will measure randomly girls and boys' hand span through measuring.
d. How will you record it? Answer: I will use a tally sheet, frequency table and double bar graph.
e. How will you make sure the data is reliable?

Answer: By making a random selection of equal numbers of boys and girls and double checking the measurements on a percentage of these.
f. Why? Give reasons for the choices you made.

Answer: To double check, and prove the authenticity of the results.
Your group will get an opportunity to present your aim, hypothesis and plan to the rest of the class.

Once all the research teams have presented their plans, you will get the opportunity to change your plans based on what they heard from the other teams.
Answer:
Our changes are:
Learners change their plans in consideration to the feedback they got from the other teams.


Answer: Learners measure, record and represent their data on tally sheet, frequency table and bar graph

## Reflection questions

Did learners meet the objectives?


## Common errors

Make notes of common errors made by the learners.

## 136 Data handling cycle continued

## Objectives

- Collect, organise, record, represent, interpret, and make conclusions on a set of data

Introduction
172

Is the hand span of Grade 7 girls smaller than that of boys in the same grade?


Use the data you collected and recorded to:
a. Organise your data in a frequency table.

Answers: Learners use the tips given in the previous page. They measure hand spans of girls and boys and record the data on a tally sheet and then transfer this to a frequency table.
b. Calculate the mean, median and mode.

Mean: the sum of scores divided by the total number of terms Median: the middle term after arranging the scores in an ascending order
Mode: the term that appears the most often in the set of numbers
c. Calculate the data range.

Answer: Data range $=$ the biggest score - the smallest score
d. Draw a stem-and-leaf display. Answer: Stem and Leaf Display

For example, in a Stem and Leaf Display for the numbers 1214 14201218131732454719 22, the leaf contains the last digit and the stem the remaining numbers (in this case all tens) Stem Leaf
12442879
202
32
$4 \quad 57$

## 136 Data handling cycle continued cont...



## 137 Possible outcomes

Topic: Probability Content links: R15, 138-140 Grade 8 links: 135 Grade 9 links: 138-143

## Objectives

- Perform simple experiments where the possible outcomes are equally likely and list the possible outcomes based on the conditions of the activity


## Dictionary

Probability: Probability is the chance that something will happen - how likely it is that some event will happen.

## Introduction

174
What are the possible outcomes when you throw this dice. What are the possible numbers the die can land on?

he possible outcomes are
$, 2,3,4,5$ and 6 .

a. What is your chance to land on $\qquad$ ? Write it as a fraction.
Answer: the probability on landing on any number on the dice is always $\frac{1}{6}$


## 137 Possible outcomes continued



If the possible outcomes are the following, how many faces will your dice have?
a. $1,2,3,4,5,6,7,8$

Answer: 8
b. Green, blue, yellow and red Answer: 4
c. The probability is $\frac{1}{6}$ to land on 3 . Answer: 4
d. The probability is $\frac{1}{12}$ to land on 6 . Answer: 12


Make your own dice that will have $\qquad$ possible outcomes. Answers:
a. 4

Reflection questions
Did learners meet the objectives?

## Common errors

Make notes of common errors made by the learners.

## 138 Definition of probability

## Objectives

- Perform simple experiments where the possible outcomes are equally likely and list the possible outcomes based on the conditions of the activity with the understanding of probability concept

Dictionary
Probability: Probability is the chance that something will happen - how likely it is that some event will happen.
Introduction
This is a probability scale:

unlikely		likely
even chance		certain

Read the following statements. Where would you place them on the probability scale?
a. The sun will rise tomorrow.
b. I don't have to study much for maths
c. When I flip a coin it will land on tails.

When I flip a coin the probability is $\frac{1}{2}, 0,5$ or $50 \%$ to land on heads or tails. What does this mean? We can use words, fractions and/or decimals to show the probability of something happening A fraction probability line is shown like this.
$\square$


Put these words in the correct place on top of the probability line: certain, impossible, likely, unlikely, even chance. Answers:


Put these numbers in the correct place on the probability line: $50 \%, 75 \%, 25 \%, 100 \%$ and $0 \%$



What is the probability of
landing on each number on the spinner? Answers:
$1=\frac{1}{6}$
$4=\frac{1}{6}$
$2=\frac{1}{6}$
$5=\frac{1}{6}$
$3=\frac{1}{6}$
$6=\frac{1}{6}$


## 138 Definition of probability continued

a. What number are you most likely to land on? Answer: All
b. What are the chances of landing on an even number? Answer: Half $\frac{1}{2}$

Show the following on the probability scale.
Example: The probability to land on 4 on a spinner with four equal sections

a. The probability of landing on heads when tossing a coin. Answer: $\frac{1}{2}$
b. The probability of a single ball randomly chosen from a bucket of four balls.
Answer: $\frac{1}{4}$
c. The probability of three sweets chosen from a packet with four sweets.
Answer: $\frac{3}{4}$


## 139 Relative frequency

## Objectives

- Determine the relative frequency of actual outcomes for a series of trials


## Dictionary

Relative frequency: This is how often something happens divided by all the outcomes. For example: if your team has won 9 games from a total of 12 games played: the frequency of winning is 9 and the number of possible outcomes is 12
The Relative Frequency of winning is $\frac{9}{12}=75 \%$

## Introduction

Sometimes we cannot tell who will win a game, but we can look at previous results to estimate the probability.

Let US look at this example: the blue and red teams have played 50 matches. The red team won 30 of the 50 matches.
The blue team won 10 of the 50 matches.
The two teams drew 10 matches.

- What is the probability of the red team winning the next match? The chance probability is $\frac{30}{50}=\frac{3}{5}$ or $60 \%$
What is the probability of the blue team winning the next match? The chance probability is $\frac{10}{50}=\frac{1}{5}$ or $20 \%$
This is the formula for relative frequency.

$$
\text { Relative frequency }=\frac{\text { number of successful ltrial }}{\text { total number of trials }}
$$

Calculate the relative frequency.

Dropped   a piece of   buttered toast   20 times	Landed 16   times with   buttered side   down.	Landed four   times with   buttered side   up.
	$\frac{16}{20}=\frac{80}{100}$ or $80 \%$	$\frac{4}{20}=\frac{20}{100}$ or $20 \%$

Answers:
i. What is the relative frequency for the bread to land with its buttered side down? 80\% Likely
ii. What is the relative frequency for the bread to land with its buttered side up?
20\% Unlikely

139 Relative frequency continued
b.

Coin tossed 100   times	Landed 60 times on   heads	Landed 40 times on   tails
	Relative frequency   100	Relative frequency

c.

$\begin{aligned} & \text { A six- } \\ & \text { sided } \\ & \text { dice } \\ & \text { was } \\ & \text { rolled } \\ & 100 \\ & \text { times. } \end{aligned}$	The 1 occurred 21 times.	The 2 occurred 18 times	$\begin{aligned} & \text { The } 3 \\ & \text { occurred } \\ & 17 \text { times. } \end{aligned}$	$\begin{aligned} & \text { The } 4 \\ & \text { occurred } \\ & 25 \text { times. } \end{aligned}$	The 5 occurred 10 times.	$\begin{aligned} & \text { The } 6 \\ & \text { occurred } \\ & 9 \text { times. } \end{aligned}$
$\begin{aligned} & 10=- \\ & i!? \end{aligned}$	$\begin{aligned} & \begin{array}{c} \text { Relative } \\ \text { frequency } \end{array} \\ & \frac{21}{100} \\ & =21 \% \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Relative } \\ \text { frequency } \end{array} \\ \frac{18}{100} \\ =18 \% \end{array}$	$\begin{array}{\|l} \begin{array}{l} \text { Relative } \\ \text { frequency } \end{array} \\ \frac{17}{100} \\ =17 \% \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Relafive } \\ \text { frequency } \end{array} \\ \frac{25}{100} \\ =25 \% \end{array}$	$\begin{aligned} & \begin{array}{c} \text { Relative } \\ \text { frequency } \end{array} \\ & \frac{10}{100} \\ & =10 \% \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Relafive } \\ \text { frequency } \end{array} \\ & \frac{9}{100} \\ & =9 \% \end{aligned}$



## 140 Probability and relative frequency

Topic: Probability Content links: R15, 137-139 Grade 8 links: 138 Grade 9 links: 138-143

## Objectives

- Perform simple experiments where the possible outcomes are equally likely and determine the relative frequency of actual outcomes for a series of trails and calculate the difference between the relative frequency and the actual probability


## Dictionary

Related frequency: How often something happens divided by all outcomes.

Introduction


What is the difference between the probability and relative frequency? Give your answer in percentages. Answers:


Difference: 8\%


##  <br> 140 Probability and relative frequency cont...



Difference: 2\%


Difference: 2\%


## Common errors

Make notes of common errors made by the learners.

## 141 Revision: number, operations and relationships

Tick yes or no.				
	Number operations and relationship concepts	Worksheet numbers	Do you need support?	
			Yes	No
	Whole numbers	R1, R2, R3, R4, R5, 8		
	Exponents	14, 15, 16, 17, 18, 19		
	Integers	$\begin{aligned} & 105,106,107,108,109,110,111 \\ & 112,113 \end{aligned}$		
	Fractions	Common fractions:   R7, 30, 31, 32, 33, 34, 35, 36, 37,   38, 39, 40, 43   Decimal fractions:   R8, 40, 41, 42, 43, 44, 45, 46, 47		
	Multiples and factors	R6, 5, 6		
	Properties of numbers	R9, 1, 2, 3, 4		
	Financial mathematics	9, 10, 11, 12, 13		
	Ratio and rate	7,8		

Learners to go through all the worksheets per topic above and make their own notes and summary.


## 141 Revision: number, operations and relationships continued



## 142 Revision: shape and space (geometry)



## 143 Revision: measurement




What do you understand now?
After finishing this worksheet, share with your teacher and/or friends what you understand now that you didn't understand before.

Rellection questions
Did learners meet the objectives?

## 144 Revision: data handling

Topic: Revision Content links: 141-143 Grade 8 links: 144 Grade 9 links: 144


Learners to go through all the worksheets per topic above and make their own notes and summary

2. Add some everyday life examples of data handling.

Teacher's notes

# Published by the Department of Basic Education 222 Struben Street Pretoria <br> South Africa <br> (O) Department of Basic Education First published in 2015 <br> Author team: Blom, L., Hilton, D. and Aitchison, J.J.W Layout: Nicholson, J. <br> This book may not be sold. 

REPUBLIC OF SOUTH AFRICA


[^0]:    Take a newspaper and find five negative numbers in it
    a. Explain what each number tells us,
    b. Write down the opposite numbers for the five numbers.

[^1]:    We can organise the data using
    Tallies
    HHIII
    Tallying is a way of counting data to make it easy to display in a table. A tally mark is used to

